- 博客(6)
- 收藏
- 关注
原创 多标签分类中不确定性量化方法的评价:以心电图自动诊断为例
在这一背景下,除了比较不同的不确定性量化(UQ)方法外,我们在研究中还包括了一个临床模拟场景,以评估将AI不确定性估计方法整合到心脏病学实践中的益处,如图1所示。该系统基于一个具备不确定性感知能力的AI模型,该模型经过训练,能够根据12导联心电图(ECG)信号检测心脏病理状况。除了对心脏病理进行分类外,该模型还提供了其对给定样本预测的整体置信度,当存在大量不确定性时,模型会选择不提供诊断。对于低不确定性的预测,每个预测诊断会提供一个独立的置信度评分。
2024-12-10 19:57:42
1530
1
原创 稳健不确定性量化的保形蒙特卡罗预测方法
在关键安全应用中部署深度学习模型仍然是一个非常具有挑战性的任务,需要为这些模型的可靠运行提供保证。不确定性量化(UQ)方法估计了每个预测的模型置信度,通过考虑随机性和模型设定错误的影响来指导决策。尽管最先进的UQ方法取得了进步,但它们计算成本高昂或产生过于保守的预测集合/区间。我们介绍了一种新的混合UQ方法MC-CP,该方法结合了一种新的自适应蒙特卡洛(MC)Dropout方法与共形预测(CP)。
2024-12-03 09:55:54
1132
原创 共形预测和无分布不确定性量化简介
黑箱机器学习模型现在经常用于高风险环境,如医疗诊断,这需要量化不确定性以避免相应的模型故障。共形预测(Conformal prediction)保形推理)是一种用户友好的范例,用于为这种模型的预测创建统计上严格的不确定性集/区间。重要的是,这些集合在无分布意义上是有效的:即使没有分布假设或模型假设,它们也具有明确的非渐近保证。我们可以使用任何预先训练的模型(如神经网络)进行共形预测,以产生保证包含用户指定概率(如90%)的地面真值的集合。
2024-12-02 15:39:03
2319
2
原创 基于不确定性量化和可靠性学习的深度证据融合多模态医学图像分割
原文题目:Deep evidential fusion with uncertainty quantification and reliability learning for multimodal medical image segmentation作者:Ling Huang单位:法国贡比涅,贡比涅技术大学期刊与影响因子:Information Fusion 14.7单模态医学图像通常不足以提供足够的信息以达到准确可靠的诊断。因此,医生通常依赖多模态医学图像进行全面的诊断评估。
2024-11-28 09:59:39
1194
原创 DS证据理论概述
Dempster合成规则是DS证据理论的核心,它的作用是将多个信息源(可以是不同人的预测、不同传感器的数据、不同分类器的输出结果等)融合在一起,形成一个更全面、更可靠的结论。
2024-11-26 11:23:50
1076
原创 数字病理学中分布外检测的预测不确定性估计
原文题目:Predictive uncertainty estimation for out-of-distribution detection in digital pathology作者:Jasper Linmans单位:荷兰奈梅亨拉德布德大学医学中心期刊与影响因子:Medical Image Analysis 10.7。
2024-11-20 16:56:10
674
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人