LeetCode 1335. 工作计划的最低难度

OJ

题意
给定一组工作序列的难度,给定天数。完成第i个工作的时候,必须要先完成(0,i-1)的工作,每天的工作难度是这一天完成的工作中难度最大的那一个,每天的难度之和为完成这组工作难度的总和,每天都必须要有工作。

题解
典型的动态规划的题目,用dp[i][j]来表示i天一共完成j个任务的最小难度。关系怎么递推呢?i天要完成j个任务,只要将这j个任务分配给这几天就可以了,求出最小分配,假设i天完成了k个任务,那么前i-1天就要完成j-k个任务,k>=i,k<=任务数量
这样就能算出i天完成j个任务的最小难度了

public int minDifficulty(int[] jobDifficulty, int d) {
	// 工作数量必须大于天数
    if (jobDifficulty.length < d) {
        return -1;
    }
    int[][] dp = new int[d + 1][jobDifficulty.length + 1];
    dp[1][1] = jobDifficulty[0];
    // 初始化第一天完成i个工作的最小难度
    for (int i = 2; i <= jobDifficulty.length; i++) {
        dp[1][i] = Math.max(dp[1][i - 1], jobDifficulty[i - 1]);
    }
    // map用来记录工作数组中i到j这个区间的最大值
    int[][] map = new int[jobDifficulty.length][jobDifficulty.length];
    for (int i = 0; i < jobDifficulty.length; i++) {
        map[i][i] = jobDifficulty[i];
        for (int j = i + 1; j < jobDifficulty.length; j++) {
            map[i][j] = Math.max(jobDifficulty[j], map[i][j - 1]);
        }
    }
    // 外层循环天数
    for (int i = 2; i <= d; i++) {
   		// 内层循环完成的任务数,第i天要完成的任务数必须大于等于i
        for (int j = i; j <= jobDifficulty.length; j++) {
            dp[i][j] = Integer.MAX_VALUE;
            // 总共要完成j个任务,i-1天分配部分任务,i天分配部分任务
            // 计算如何分配才能使难度最小
            for (int k = i - 1; k < j; k++) {
                dp[i][j] = Math.min(dp[i - 1][k] + map[k][j - 1], dp[i][j]);
            }
        }
    }
    // 返回d天完成指定任务的最小难度
    return dp[d][jobDifficulty.length];
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值