题意
给定一组工作序列的难度,给定天数。完成第i个工作的时候,必须要先完成(0,i-1)的工作,每天的工作难度是这一天完成的工作中难度最大的那一个,每天的难度之和为完成这组工作难度的总和,每天都必须要有工作。
题解
典型的动态规划的题目,用dp[i][j]来表示i天一共完成j个任务的最小难度。关系怎么递推呢?i天要完成j个任务,只要将这j个任务分配给这几天就可以了,求出最小分配,假设i天完成了k个任务,那么前i-1天就要完成j-k个任务,k>=i,k<=任务数量
这样就能算出i天完成j个任务的最小难度了
public int minDifficulty(int[] jobDifficulty, int d) {
// 工作数量必须大于天数
if (jobDifficulty.length < d) {
return -1;
}
int[][] dp = new int[d + 1][jobDifficulty.length + 1];
dp[1][1] = jobDifficulty[0];
// 初始化第一天完成i个工作的最小难度
for (int i = 2; i <= jobDifficulty.length; i++) {
dp[1][i] = Math.max(dp[1][i - 1], jobDifficulty[i - 1]);
}
// map用来记录工作数组中i到j这个区间的最大值
int[][] map = new int[jobDifficulty.length][jobDifficulty.length];
for (int i = 0; i < jobDifficulty.length; i++) {
map[i][i] = jobDifficulty[i];
for (int j = i + 1; j < jobDifficulty.length; j++) {
map[i][j] = Math.max(jobDifficulty[j], map[i][j - 1]);
}
}
// 外层循环天数
for (int i = 2; i <= d; i++) {
// 内层循环完成的任务数,第i天要完成的任务数必须大于等于i
for (int j = i; j <= jobDifficulty.length; j++) {
dp[i][j] = Integer.MAX_VALUE;
// 总共要完成j个任务,i-1天分配部分任务,i天分配部分任务
// 计算如何分配才能使难度最小
for (int k = i - 1; k < j; k++) {
dp[i][j] = Math.min(dp[i - 1][k] + map[k][j - 1], dp[i][j]);
}
}
}
// 返回d天完成指定任务的最小难度
return dp[d][jobDifficulty.length];
}