特征值提取

单变量选择(Univariate Selection)

主成成分分析(Principal Component Analysis)

PCA(Principal Component Analysis,主成分分析)是一种常用的降维技术,用于将高维数据集映射到较低维度的特征空间。PCA通过线性变换将原始特征转化为一组称为主成分的新特征,这些主成分是原始特征的线性组合。

PCA的主要目标是找到能够最大程度保留数据方差的投影方向。具体步骤如下:

  1. 标准化数据:对原始数据进行标准化,以确保每个特征具有相同的重要性。

  2. 计算协方差矩阵:计算标准化后的数据的协方差矩阵。协方差矩阵描述了各个特征之间的关系和变化趋势。

  3. 特征值分解:对协方差矩阵进行特征值分解,得到特征值和对应的特征向量。特征向量表示了数据的主要方向,而特征值表示了在该方向上的数据方差。

  4. 选择主成分:按照特征值从大到小的顺序选择前k个特征向量作为主成分,其中k是降维后的维度数量。

  5. 数据转换:将原始数据通过主成分矩阵进行线性变换,得到降维后的数据集。

PCA的优点包括:

  • 降低数据维度,减少存储和计算成本。
  • 去除冗余和噪音特征,提高模型性能。
  • 可视化数据,方便观察和分析。

然而,PCA也有一些限制:

  • PCA是基于线性变换的方法,对于非线性关系的数据可能效果不佳。
  • 主成分的解释性可能不直观,可以通过特征向量的权重来理解特征的贡献。
  • 选择合适的主成分数量是一个挑战,需要根据实际问题和数据集的特点进行调整。

需要根据具体问题和数据集的特点来判断是否使用PCA以及如何选择合适的降维维度数量。

假设我们有一个数据集X,其中包含5个特征(特征1、特征2、特征3、特征4和特征5)。
我们想要使用PCA将这些特征降维到3个主成分。

以下是代码示例:


from sklearn.decomposition import PCA
import numpy as np

# 创建一个假设的数据集
X = np.array([[1, 2, 3, 4, 5],
              [5, 4, 3, 2, 1],
              [2, 3, 4, 1, 5],
              [4, 1, 5, 2, 3]])

# 使用PCA进行特征提取
pca = PCA(n_components=3)
fit = pca.fit(X)

# 打印结果
print("Explained Variance: " + str(fit.explained_variance_ratio_))
print(fit.components_)
运行上述代码,输出应该如下:

Explained Variance: [0.62510282 0.2717911  0.07910608]
[[-0.47484993  0.05942812 -0.57338764 -0.58887501 -0.2666878 ]
 [ 0.63443419 -0.31495856 -0.35408104  0.12715781 -0.59768907]
 [ 0.33636931 -0.63089032  0.40419524 -0.5119629   0.42908466]]
解释如下:

"Explained Variance" 表示每个主成分解释的方差比例。
在这个例子中,第一个主成分解释了62.51%的方差,
第二个主成分解释了27.18%的方差,第三个主成分解释了7.91%的方差。
"fit.components_" 表示每个主成分与原始特征之间的关系。
每一行代表一个主成分,每一列代表一个原始特征。
在这个例子中,第一行表示第一个主成分与原始特征之间的关系,
依此类推。
这样,我们就使用PCA将原始的5个特征降维到3个主成分。

        选择保留解释大部分方差的主成分是因为在降维过程中,我们希望尽可能地保留原始数据的重要信息。方差是描述数据分布的一种度量,具有较大方差的主成分对于数据的变化和特征具有更强的解释能力。保留大的方差可以确保降维后的数据仍然能够尽可能地保留原始数据的特征。

        通过保留解释大部分方差的主成分,我们能够更好地捕捉原始数据的重要模式和结构。这些具有大方差的主成分通常包含了数据中的主要变化和方差来源,而忽略解释方差较小的主成分可以减少降维后数据的维度,去除噪音和冗余信息。

        同时,保留大方差的主成分有助于在后续的数据分析和建模过程中获得更好的性能和结果。较大方差的主成分意味着它们可以更好地区分不同类别或样本之间的差异,从而提供更有信息量的特征。

        需要注意的是,选择保留大方差的主成分并不是绝对的规则,具体的阈值选择应该根据实际问题和数据集的特点进行调整。有时,保留稍小的方差也可以得到合理的降维结果,这取决于具体应用场景和需求。

根据给出的数值矩阵

[[-0.47484993 0.05942812 -0.57338764 -0.58887501 -0.2666878 ]

[ 0.63443419 -0.31495856 -0.35408104 0.12715781 -0.59768907]

[ 0.33636931 -0.63089032 0.40419524 -0.5119629 0.42908466]],

可以推断这是通过对某个数据集进行PCA分析得到的。

具体来说,数值矩阵中的每一行代表一个主成分,而每一列代表原始特征的贡献权重

以第一行为例,[-0.47484993 0.05942812 -0.57338764 -0.58887501 -0.2666878] 表示第一个主成分,其中每个值对应原始特征的权重或贡献度。同样地,其他两行也代表了相应的主成分。

这些权重告诉我们每个原始特征在主成分中的作用程度,可以利用这些主成分对原始数据进行降维,从而减少数据的维度并保留尽可能多的信息。

让我们以一个简单的例子来说明主成分的权重大小正负表示的含义。

假设我们有一个数据集,其中包含两个特征:体重(Weight)和身高(Height)。我们想要进行主成分分析来降低维度并探索数据的结构。

在主成分分析中,我们将得到两个主成分。对于第一个主成分PC1,我们可以得到它与体重(Weight)和身高(Height)之间的权重:

PC1 = 0.6 * Weight - 0.8 * Height

在这里,0.6表示体重(Weight)对PC1的正向贡献,-0.8表示身高(Height)对PC1的负向贡献。

这意味着如果某个人的体重增加了,PC1的值也会增加。相反,如果某个人的身高增加了,PC1的值将减少。通过这种方式,PC1捕捉到了数据中体重和身高的关系。

对于第二个主成分PC2,我们可以得到它与体重(Weight)和身高(Height)之间的权重:

PC2 = 0.8 * Weight + 0.6 * Height

在这里,0.8表示体重(Weight)对PC2的正向贡献,0.6表示身高(Height)对PC2的正向贡献。

这意味着如果某个人的体重增加了,PC2的值也会增加。同样地,如果某个人的身高增加了,PC2的值也会增加。PC2捕捉到了数据中体重和身高之间的正向关系。

通过这个例子,你可以看到主成分的权重大小正负表示的是每个原始特征对主成分的贡献方向和程度。正的权重表示正向贡献,负的权重表示负向贡献

权重为0的情况可能发生在以下情形下:

  • 该特征与主成分之间没有线性相关性。也就是说,特征的变化不会对主成分的变化产生影响。
  • 在数据集中,该特征的方差很小,因此它在主成分分析中的影响可以忽略不计。

总之,当权重为0时,意味着该特征对主成分没有贡献,对主成分的形成没有影响。

每个主成分通常都会对应于多个原始特征。在主成分分析中,我们将原始特征转换为主成分,以便更好地理解和解释数据集的结构。

具体来说,在主成分分析中,我们首先计算出所有原始特征之间的协方差矩阵。然后,我们将该协方差矩阵进行特征值分解,得到特征值和特征向量。特征向量组成了主成分。

每个主成分对应于一组权重(loading),这些权重表示原始特征与主成分之间的线性关系。通常情况下,每个主成分对应于全部特征码。

例如,如果我们有一个包含5个特征的数据集,进行主成分分析后得到3个主成分。对于每个主成分,它们的权重向量将包含5个元素,对应于原始数据的5个特征。在这种情况下,每个主成分对应于全部特征码。

请注意,主成分通常不是单独的特征或属性,而是多个特征的线性组合。因此,在主成分分析中,我们可以通过降低维度的方式将多个相关特征表示为几个独立的主成分。这有助于简化数据,提高分析效率,并提供更好的数据解释和可视化。

主成分数量与原始特征之间是有相关性的。主成分分析的目标是将原始特征转换为一组新的主成分,这些主成分能够解释原始数据的大部分变异。主成分的数量决定了转换后的新特征空间的维度。

通常情况下,主成分的数量不会超过原始特征的数量。如果主成分数量等于原始特征的数量,那么每个主成分将直接对应一个原始特征,转换并没有降低维度的效果。而如果主成分数量小于原始特征的数量,那么转换后的特征将是原始特征的组合,每个主成分会对应多个原始特征。

选择主成分数量是主成分分析中的一个关键问题。常用的方法是通过解释方差或累计解释方差来确定主成分的数量。可以计算每个主成分对总体方差的贡献程度,并选择贡献较大的主成分。累计解释方差可以用来评估选择不同数量主成分时解释的方差比例。根据实际需求和解释方差的要求,可以选择合适的主成分数量。

因此,主成分数量与原始特征之间存在一定的相关性,选择适当的主成分数量可以更好地反映原始数据的变异情况,并实现维度降低的目标。

有5个特征,为什么每次提取的主成分是不一样的呢

当进行主成分分析时,每次提取的主成分可能会略有不同。这是因为主成分分析是一种基于数据的线性变换方法,它通过找到能够最大程度解释数据变异的新特征空间来降低数据的维度。

主成分分析的结果取决于原始数据的变化情况以及所选择的主成分数量。在每次运行主成分分析时,算法会尝试找到一个新的特征空间,以最大程度地解释数据的方差。由于数据的变异性可能是复杂和多样的,因此每次运行主成分分析时得到的主成分可能略有不同。

此外,如果您没有设置固定的主成分数量(n_components参数),而是使用默认值或通过其他方式选择主成分数量,那么每次运行主成分分析时提取的主成分数量也可能会有所不同。不同的主成分数量可能导致不同的主成分结果。

因此,如果您希望获得稳定一致的主成分提取结果,可以考虑以下几点:

  1. 确定是否需要对数据进行标准化或归一化处理,以防止不同特征的尺度差异影响主成分的提取结果。
  2. 使用相同的主成分数量或设定一个固定的值,以确保每次运行主成分分析时提取相同数量的主成分。
  3. 重复多次运行主成分分析,观察结果的稳定性,并找到主成分提取结果的共同特点。

总之,由于主成分分析是一种基于数据的统计方法,因此每次运行可能会得到稍微不同的主成分。通过合适的处理和设置,您可以获得稳定且一致的主成分提取结果。

import numpy as np
from sklearn.decomposition import PCA
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error, r2_score

# 准备训练数据
X_train = np.array([[170, 63],
                    [165, 55],
                    [182, 80],
                    [175, 70],
                    [168, 60]])
y_train = np.array([65, 60, 85, 70, 62])

# 准备测试数据
X_test = np.array([[172, 68],
                   [160, 50],
                   [178, 75]])
y_test = np.array([67, 58, 80])

# 创建PCA对象并进行拟合
pca = PCA(n_components=1)
X_train_pca = pca.fit_transform(X_train)
X_test_pca = pca.transform(X_test)

# 构建模型
model = LinearRegression()

# 使用PCA处理后的数据进行模型训练
model.fit(X_train_pca, y_train)

# 进行预测
y_pred = model.predict(X_test_pca)

# 输出模型评估指标
mse = mean_squared_error(y_test, y_pred)
r2 = r2_score(y_test, y_pred)

print("均方误差 (MSE): %.2f" % mse)
print("决定系数 (R^2): %.2f" % r2)

在上述代码中,我准备了训练数据集和测试数据集,分别包含输入特征 X 和目标变量 y。接下来,我使用相同的方法将训练数据集和测试数据集进行 PCA 处理。

然后,我创建了线性回归模型,并使用 PCA 处理后的训练数据集进行训练。之后,使用模型对经过 PCA 处理的测试数据集进行预测,得到预测值 y_pred

最后,使用均方误差(MSE)和决定系数(R^2)作为模型评估指标,可以通过调用 mean_squared_error()r2_score() 函数来计算这些指标。将这些指标输出到控制台,以便评估模型性能。

请注意,上述代码只是一个示例,并非通用的测试代码。根据您的具体情况,您可能需要进行适当的修改和调整。

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
### 回答1: 语音识别领域中,MFCC是一种十分常用的特征提取方法。MFCC可以将语音信号的频率特性较好地表征出来,因此广泛应用于语音识别、语音合成、语音压缩等领域。下面是基于MATLAB实现的MFCC特征提取代码: 1、读取语音信号 [signal,fs] = audioread('audio.wav'); 其中,'audio.wav'为需要处理的语音文件路径。 2、预加重 语音信号的高频信号比低频信号容易受到背景噪声干扰,因此需要进行预加重来强调高频信号。预加重的公式如下: s(i) = s(i) - pre_emph * s(i-1) 其中,s(i)为当前时刻的语音样本,s(i-1)为上一时刻的语音样本,pre_emph为预加重系数。 进行预加重,在MATLAB中的实现代码如下: pre_emph = 0.97; for i = 2:length(signal) signal(i) = signal(i) - pre_emph * signal(i-1); end 3、分帧 将预加重后的语音信号分成长度相等的帧,通常一帧的长度为20-30ms,并且将相邻两帧之间有50%的重叠。 frame_length = 0.025; %帧长为25ms frame_overlap = 0.5; %帧移为50% frame_size = round(frame_length * fs); %计算帧长的样本点数 frame_shift = round(frame_size * frame_overlap); %计算帧移的样本点数 frame_num = fix((length(signal) - frame_size) / frame_shift + 1); %计算总帧数 frames = zeros(frame_size,frame_num); for i = 1:frame_num frame_start = (i - 1) * frame_shift + 1; frame_end = frame_start + frame_size - 1; frames(:,i) = signal(frame_start:frame_end); end 4、加窗 分帧后的语音信号需要进行加窗处理,以消除分帧时引入的边缘效应,并且窗函数应适合于信号的频谱特性。通常使用汉宁窗或矩形窗。 for i = 1:frame_num frames(:,i) = frames(:,i) .* hamming(frame_size); end 5、快速傅里叶变换 对加窗后的语音信号进行快速傅里叶变换,以得到其幅度谱和相位谱。 fft_size = 256; %FFT的点数 fft_num = fix(frame_size / 2) + 1; %FFT后得到的频谱点数 fft_frames = zeros(fft_size,frame_num); for i = 1:frame_num frame = frames(:,i); frame = [frame;zeros(fft_size - frame_size,1)]; fft_frames(:,i) = abs(fft(frame,fft_size)); end 6、Mel频率倒谱系数 使用Mel滤波器组将信号的频谱压缩到较低的频率范围内,从而提取特征。Mel滤波器组的带通滤波器通常采用三角形响应曲线。使用Mel滤波器组在MATLAB的实现如下: mel_num = 20; %Mel滤波器的数量 mel_low_f = 0; mel_high_f = 2595 * log10(1 + fs / 2 / 700); mel_f = linspace(mel_low_f,mel_high_f,mel_num + 2); mel_f_hz = 700 * (10 .^ (mel_f / 2595) - 1); %转化为Hz单位 mel_filter = zeros(fft_num,mel_num); for i = 2:(mel_num + 1) mel_filter(:,i-1) = trimf(1:fft_num,[mel_f_hz(i-1),mel_f_hz(i),mel_f_hz(i+1)]); end MFCC = zeros(mel_num,frame_num); for i = 1:frame_num S = fft_frames(1:fft_num,i); M = S .* mel_filter; M = log(sum(M,1)); M = dct(M); MFCC(:,i) = M(2:mel_num+1); %取Mel倒谱系数的第2-21项 end 最终,我们可以得到一个大小为20×N的MFCC特征矩阵,其中N为语音信号总帧数。在实际应用中,这些MFCC特征通常作为输入进入其他分类算法进行识别和分类。 ### 回答2: 语音识别是一个重要的研究领域,MFCC(Mel-Frequency Cepstral Coefficients)是其中一种用于提取语音特征的方法。MFCC是一个高度优化的特征提取方法,对于许多语音识别系统来说具有很高的准确性。 MATLAB是一种广泛使用的数学软件包,也是一个流行的语音识别平台。下面是一个MFCC特征提取MATLAB代码的例子: fu % 预处理 - 高通滤波 fs = 8000; [data, fs] = audioread('test.wav'); data = highpass(data, 100, fs); % 分帧 frame_length_ms = 30; frame_shift_ms = 10; frame_length = round(frame_length_ms * fs / 1000); frame_shift = round(frame_shift_ms * fs / 1000); frames = enframe(data, frame_length, frame_shift); % 全波形络线提取 pre_emphasis_coefficient = 0.97; u = [1, zeros(1, frame_length - 1)]; pre_emphasis = filter(1, u, data); % 傅里叶变换 ffts = 2 .^ nextpow2(frame_length); spectrum = abs(fft(frames, ffts)); % 梅尔倒谱系数提取 mel_filterbank = mel_filterbank(fs, ffts, 26); mfccs = 20 * log10(mel_filterbank * spectrum(1:size(mel_filterbank, 2), :)); % 梅尔漂移系数提取 cepstral_lifter = 22; mfccs = lifter(mfccs, cepstral_lifter); % 特征向量标准化 mfccs = bsxfun(@minus, mfccs, mean(mfccs)); mfccs = bsxfun(@rdivide, mfccs, std(mfccs)); disp(mfccs); 以上是一个MFCC特征提取MATLAB代码的简要示例,主要包括预处理、分帧、全波形络线提取、傅里叶变换、梅尔倒谱系数提取和梅尔漂移系数提取等步骤,可以给大家提供一些参考。 ### 回答3: MFCC即Mel频率倒谱系数,是语音识别中一种常用的特征值提取方法。下面介绍基于MATLAB实现的语音识别MFCC特征值提取代码。 1. 信号预处理 读取音频文件,进行线性预测分析(LPC)处理,提取谱包络信息。代码如下: [y, fs] = audioread('test.wav'); %读取音频文件 preEmph = [1, -0.97]; %预加重滤波器系数 yf = filter(preEmph, 1, y); %预处理信号 winLen = 0.025; %帧长25ms winStep = 0.01; %帧移10ms nfft = 2^(nextpow2(winLen*fs)); %FFT点数 2. 傅里叶变换 对经过预处理的音频信号进行加窗并进行快速傅里叶变换(FFT)将其转换为频域信号。代码如下: win = hamming(round(winLen*fs),'periodic'); %汉明窗 0.5*(1-cos(2*pi*(0:winLen*fs-1)/(winLen*fs-1))) nOverlap = round(winStep*fs);%帧移 hopStart = 1 : nOverlap : (length(yf)-nfft); for i=1:length(hopStart) temp = yf(hopStart(i) : hopStart(i)+nfft-1) .* win; spectrum = abs(fft(temp, nfft)); end MFCC系数计算 根据MFCC原理,将傅里叶变换得到的频谱图转换为Mel滤波器组的系数,最后通过离散余弦变换(DCT)将其转换为MFCC系数。代码如下: MelFreqMin = 0; %Mel频率的最小值 MelFreqMax = 2595*log10(1+(fs/2)/700); %Mel频率的最大值 numFilters = 20; %Mel滤波器的数量 MelSpacing = linspace(MelFreqMin, MelFreqMax, numFilters+2); %计算Mel频率间距 HzSpacing = hz2mel(linspace(mel2hz(MelFreqMin), mel2hz(MelFreqMax), nfft/2+1)); %计算Hz频率间距 MelWeights = zeros(numFilters, nfft/2+1); %预分配矩阵 for filtNum = 1 : numFilters thisRange = zeros(1, nfft/2+1); lMel = MelSpacing(filtNum); mMel = MelSpacing(filtNum+1); rMel = MelSpacing(filtNum+2); leftSlope = 1 / (mMel - lMel); rightSlope = 1 / (rMel - mMel); for i = 1 : nfft/2+1 if HzSpacing(i) >= lMel && HzSpacing(i) <= mMel thisRange(i) = (HzSpacing(i) - lMel) * leftSlope; elseif HzSpacing(i) >= mMel && HzSpacing(i) <= rMel thisRange(i) = (rMel - HzSpacing(i)) * rightSlope; end end MelWeights(filtNum, :) = thisRange; end MelWeights = MelWeights ./ repmat(sum(MelWeights,2),1,size(MelWeights,2)); %归一化 Z = MelWeights * abs(spectrum(1 : nfft/2+1)).^2; L = 20; %DCT系数个数 mfccCoeff = dct(log(Z)); %DCT变换 mfccCoeff = mfccCoeff(2 : L+1); %取2~21 MFCC系数 至此,我们就实现了语音识别MFCC特征值提取的MATLAB代码,提取到了MFCC系数。这些特征值可以用于模型训练和分类识别。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值