论文标题
UFDA: Universal Federated Domain Adaptation with Practical Assumptions 通用联邦域自适应:具有实际假设的框架
论文链接
UFDA: Universal Federated Domain Adaptation with Practical Assumptions 论文下载
论文作者
Xinhui Liu, Zhenghao Chen, Luping Zhou, Dong Xu, Wei Xi, Gairui Bai, Yihan Zhao, Jizhong Zhao
内容简介
本文提出了一种新的联邦域自适应(FDA)场景,称为通用联邦域自适应(UFDA),旨在解决传统FDA方法中对标签集一致性等假设的严格要求,这些假设在现实世界中往往难以满足。UFDA仅需每个源域的黑盒模型和标签集信息,允许不同源域的标签集不一致,并且目标域的标签集完全未知。为了解决UFDA场景中的域转移和类别差距问题,本文提出了一种名为对比标签消歧热学习(HCLD)的框架。HCLD通过使用来自不同源域的独热输出,结合聚类级的互投票决策(MVD)策略,提取源域和目标域之间的共识知识。实验结果表明,HCLD在UFDA场景下的性能与传统方法相当,但依赖的假设条件显著减少,展示了其在实际应用中的可行性。
分点关键点
- UFDA场景的提出
- UFDA场景放宽了传统FDA对标签集一致性的要求,允许源域和目标域之间的标签集存在差异。这一创新使得UFDA在现实世界应用中更具可行性,尤其是在数据隐私和安全性方面。
- HCLD框架
- HCLD框架通过使用来自不同源域的黑盒模型的独热输出,生成多个候选伪标签,从而减轻了由于类别差距带来的不确定性。此外,HCLD还引入了基于高斯混合模型的对比标签消歧(GCLD)策略,以提高伪标签的可信度。
-
互投票决策(MVD)策略
- MVD策略通过计算共享类的“互投评分”,有效地区分源域和目标域中的共享类和未知类。这一策略利用了源域和目标域之间的共识知识,增强了模型的分类能力。
- MVD策略通过计算共享类的“互投评分”,有效地区分源域和目标域中的共享类和未知类。这一策略利用了源域和目标域之间的共识知识,增强了模型的分类能力。
-
实验结果与实用性
- 在三个基准数据集上的实验表明,HCLD在UFDA场景下的表现与传统多源域自适应方法相当,但所需的假设条件显著减少,验证了其在实际应用中的有效性和可行性。
论文代码
代码链接:https://github.com/UFDA-HCLD
中文关键词
- 通用联邦域自适应
- 联邦学习
- 标签集一致性
- 黑盒模型
- 对比学习
- 聚类级策略
AAAI2024论文合集:
希望这些论文能帮到你!如果觉得有用,记得点赞关注哦~ 后续还会更新更多论文合集!!