AAAI论文合集解读|UFDA Universal Federated Domain Adaptation with Practical Assumptions-water-merged

论文标题

UFDA: Universal Federated Domain Adaptation with Practical Assumptions 通用联邦域自适应:具有实际假设的框架

论文链接

UFDA: Universal Federated Domain Adaptation with Practical Assumptions 论文下载

论文作者

Xinhui Liu, Zhenghao Chen, Luping Zhou, Dong Xu, Wei Xi, Gairui Bai, Yihan Zhao, Jizhong Zhao

内容简介

本文提出了一种新的联邦域自适应(FDA)场景,称为通用联邦域自适应(UFDA),旨在解决传统FDA方法中对标签集一致性等假设的严格要求,这些假设在现实世界中往往难以满足。UFDA仅需每个源域的黑盒模型和标签集信息,允许不同源域的标签集不一致,并且目标域的标签集完全未知。为了解决UFDA场景中的域转移和类别差距问题,本文提出了一种名为对比标签消歧热学习(HCLD)的框架。HCLD通过使用来自不同源域的独热输出,结合聚类级的互投票决策(MVD)策略,提取源域和目标域之间的共识知识。实验结果表明,HCLD在UFDA场景下的性能与传统方法相当,但依赖的假设条件显著减少,展示了其在实际应用中的可行性。

分点关键点

  1. UFDA场景的提出
    • UFDA场景放宽了传统FDA对标签集一致性的要求,允许源域和目标域之间的标签集存在差异。这一创新使得UFDA在现实世界应用中更具可行性,尤其是在数据隐私和安全性方面。

在这里插入图片描述

  1. HCLD框架
    • HCLD框架通过使用来自不同源域的黑盒模型的独热输出,生成多个候选伪标签,从而减轻了由于类别差距带来的不确定性。此外,HCLD还引入了基于高斯混合模型的对比标签消歧(GCLD)策略,以提高伪标签的可信度。

在这里插入图片描述

  1. 互投票决策(MVD)策略

    • MVD策略通过计算共享类的“互投评分”,有效地区分源域和目标域中的共享类和未知类。这一策略利用了源域和目标域之间的共识知识,增强了模型的分类能力。
      在这里插入图片描述
  2. 实验结果与实用性

    • 在三个基准数据集上的实验表明,HCLD在UFDA场景下的表现与传统多源域自适应方法相当,但所需的假设条件显著减少,验证了其在实际应用中的有效性和可行性。

论文代码

代码链接:https://github.com/UFDA-HCLD

中文关键词

  1. 通用联邦域自适应
  2. 联邦学习
  3. 标签集一致性
  4. 黑盒模型
  5. 对比学习
  6. 聚类级策略

AAAI2024论文合集:

AAAI2024论文合集

希望这些论文能帮到你!如果觉得有用,记得点赞关注哦~ 后续还会更新更多论文合集!!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值