论文标题
Enhancing Hyperspectral Images via Diffusion Model and Group-Autoencoder Super-resolution Network 基于扩散模型和分组自编码器超分辨率网络的超光谱图像增强
论文链接
论文作者
Zhaoyang Wang, Dongyang Li, Mingyang Zhang, Hao Luo, Maoguo Gong
内容简介
本文提出了一种新颖的超光谱图像(HSI)超分辨率(SR)模型,结合了扩散模型和分组自编码器(GAE)框架。现有的HSI SR方法在捕捉复杂的谱空间关系和低级细节方面存在困难,而扩散模型在建模复杂关系和学习高低级视觉特征方面表现出色。直接将扩散模型应用于HSI SR面临模型收敛困难和推理时间过长等挑战。为此,本文提出的GAE框架将高维HSI数据编码为低维潜在空间,使扩散模型能够更有效地工作,从而显著提高了模型的训练效率和推理速度。实验结果表明,该方法在多个自然和遥感HSI数据集上均优于现有的最先进方法,具有更好的视觉效果和度量性能。
分点关键点
-
GAE框架的创新
- 本文提出的GAE框架通过将高维HSI数据编码为低维潜在空间,解决了扩散模型在高维数据上的训练和收敛问题。该框架有效地保持了波段相关性,并显著减少了推理时间。
-
扩散模型的应用
- 扩散模型在HSI SR任务中首次被应用,能够隐式捕获高低级特征,提升复杂谱空间关系的学习能力。通过与自编码器技术的结合,克服了收敛困难并提高了推理效率。
-
实验验证
- 在三个公开的HSI数据集上进行的广泛实验表明,所提出的方法在客观指标(如PSNR、SSIM等)和主观视觉质量方面均优于现有的最先进方法,验证了模型的有效性和实用性。
-
模型架构与训练过程
- 模型由两个主要训练阶段组成:第一阶段训练自编码器以编码输入数据,第二阶段训练扩散模型以生成超分辨率图像。通过这种分阶段的训练策略,模型能够有效地提取和重建HSI数据的特征。
)
- 模型由两个主要训练阶段组成:第一阶段训练自编码器以编码输入数据,第二阶段训练扩散模型以生成超分辨率图像。通过这种分阶段的训练策略,模型能够有效地提取和重建HSI数据的特征。
中文关键词
- 超光谱图像
- 超分辨率
- 扩散模型
- 自编码器
- 光谱分组
- 计算机视觉
AAAI论文合集:
希望这些论文能帮到你!如果觉得有用,记得点赞关注哦~ 后续还会更新更多论文合集!!