AAAI2024最佳解读|Enhancing Hyperspectral Images via Diffusion Model and Group-Autoencoder

论文标题

Enhancing Hyperspectral Images via Diffusion Model and Group-Autoencoder Super-resolution Network 基于扩散模型和分组自编码器超分辨率网络的超光谱图像增强

论文链接

Enhancing Hyperspectral Images via Diffusion Model and Group-Autoencoder Super-resolution Network论文下载

论文作者

Zhaoyang Wang, Dongyang Li, Mingyang Zhang, Hao Luo, Maoguo Gong

内容简介

本文提出了一种新颖的超光谱图像(HSI)超分辨率(SR)模型,结合了扩散模型和分组自编码器(GAE)框架。现有的HSI SR方法在捕捉复杂的谱空间关系和低级细节方面存在困难,而扩散模型在建模复杂关系和学习高低级视觉特征方面表现出色。直接将扩散模型应用于HSI SR面临模型收敛困难和推理时间过长等挑战。为此,本文提出的GAE框架将高维HSI数据编码为低维潜在空间,使扩散模型能够更有效地工作,从而显著提高了模型的训练效率和推理速度。实验结果表明,该方法在多个自然和遥感HSI数据集上均优于现有的最先进方法,具有更好的视觉效果和度量性能。在这里插入图片描述

分点关键点在这里插入图片描述

  1. GAE框架的创新

    • 本文提出的GAE框架通过将高维HSI数据编码为低维潜在空间,解决了扩散模型在高维数据上的训练和收敛问题。该框架有效地保持了波段相关性,并显著减少了推理时间。
  2. 扩散模型的应用

    • 扩散模型在HSI SR任务中首次被应用,能够隐式捕获高低级特征,提升复杂谱空间关系的学习能力。通过与自编码器技术的结合,克服了收敛困难并提高了推理效率。
  3. 实验验证

    • 在三个公开的HSI数据集上进行的广泛实验表明,所提出的方法在客观指标(如PSNR、SSIM等)和主观视觉质量方面均优于现有的最先进方法,验证了模型的有效性和实用性。
  4. 模型架构与训练过程

    • 模型由两个主要训练阶段组成:第一阶段训练自编码器以编码输入数据,第二阶段训练扩散模型以生成超分辨率图像。通过这种分阶段的训练策略,模型能够有效地提取和重建HSI数据的特征。在这里插入图片描述

中文关键词

  1. 超光谱图像
  2. 超分辨率
  3. 扩散模型
  4. 自编码器
  5. 光谱分组
  6. 计算机视觉

AAAI论文合集:

AAAI论文合集

希望这些论文能帮到你!如果觉得有用,记得点赞关注哦~ 后续还会更新更多论文合集!!

### AAAI 2024 Conference Related Code Repositories For individuals interested in exploring the latest advancements presented at conferences like AAAI 2024, several platforms provide access to associated code repositories and examples. GitHub serves as a primary hub where researchers often publish their work alongside papers[^2]. By navigating through specific tags or using search terms such as "AAAI 2024," one can discover numerous projects that were either showcased during the event or inspired by it. Additionally, many academic institutions maintain dedicated pages for each edition of major AI conferences including AAAI. These sites typically include links to accepted paper submissions along with supplementary materials which may consist of datasets used in experiments, implementation details, and even full source codes when authors opt to share them publicly[^1]. Moreover, community-driven initiatives also play an important role in aggregating resources around significant events within the field of artificial intelligence. Websites focused on machine learning and data science frequently compile lists of noteworthy contributions from recent gatherings, offering readers easy navigation between abstracts and corresponding software implementations available online. #### Example Search Query for Finding Relevant Projects To streamline this process further, here is how someone might structure a query aimed at uncovering relevant repositories: ```bash site:github.com intitle:"AAAI 2024" ``` This command leverages Google's advanced operators to filter results specifically targeting titles containing both keywords while restricting searches exclusively within the domain name provided (in this case, GitHub). --related questions-- 1. How do I effectively contribute my own project to be featured prominently after attending prominent AI conferences? 2. What are some best practices for documenting research code intended for public release following publication in journals or presentation at symposiums? 3. Can you recommend any tools designed to facilitate collaboration among developers working on open-source AI applications derived from conference proceedings?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值