Dijkstra算法实现

目的:求单源最短路径
辅助数组
1、dist[]:用来记录源点到结点i的最短距离
2、s[]:用来记录结点i是否已经被收录
3、path[]:结点i是从path[i]过来的
算法步骤:
1、初始化:
如果两点之间没有直接路径,graph[i][j] 设置为最大值,否则记录每条边的权值
dist[]:如果有到源点的直接路径,则初始化为路径长度,否则初始化为最大值,表示没直接可达的路径。
s[]:除源点外,每个元素初始化为0,1代表收录,0代表未收录
path[]:初始化为-1;
2、从未收录的顶点中,找寻dist最小的元素作为这次收录的顶点,更新源点到每个结点的最小距离,以及对应的path
3、重复上述过程,直到所有的点都被收录

代码实现

#include "stdafx.h";
#include <iostream>
#include<stack>
using namespace std;
#define MaxValue 10000 
typedef int VertexType;
#define MaxVertexNum 100
#define Init -1
int Graph[MaxVertexNum][MaxVertexNum];
int path[MaxVertexNum];
int dist[MaxVertexNum];
int s[MaxVertexNum];
int nv;
int ne;

void build(){
	cout << "请输入顶点个数"<<endl;
	cin >> nv;
	//初始化图
	for(int i = 1;i <= nv;i++) {
		for(int j = 1; j <= nv;j++){
			if(i == j) Graph[i][j] = 0;
			else
				Graph[i][j] = MaxValue;
		}
	}
	//初始化路径,距离以及收录情况
	for(int i = 1;i <= nv;i++){
		path[i] = Init;
		s[i] = 0;//0代表未收录,1代表收录
	}
	for(int i = 0;i <= nv; i++){
		dist[i] = MaxValue;
	}
	//初始化边
	cout << "请输入边数"<<endl;
	cin >> ne;
	cout << "请输入边信息,v1 v2 weight" << endl;
	int v1,v2,weight;
	for(int i = 1;i <= ne;i++){
		cin >> v1 >> v2 >> weight;
		if(v1>=1 && v1 <= nv && v2 >= 1 && v2<= nv) {
			Graph[v1][v2] = weight;
		}
	}
	
}

void create(VertexType v) {
	build();
	dist[v] = 0;
	s[v] = 1;
	for(int i = 1;i<=nv;i++){
		if(i == v){
			continue;
		}else{
			if(Graph[v][i] != MaxValue){
				path[i] = v;
				dist[i] = Graph[v][i];
			}		
		}
	}


}

//查找到原点距离最小的点
VertexType findMin(VertexType v) {
	int min = 0;
	for(int i =1;i <= nv;i++){
		if(i != v && s[i] == 0 && dist[i] < dist[min]){
			min = i;
		}
	}
	return min;
}

void Dijkstra(VertexType v){
	create(v);
	while(1){
		VertexType cur = findMin(v);
		if(cur == 0){
			break;
		}
		s[cur] = 1;//收录
		for(int i = 1;i <= nv;i++){
			if(s[i]==0 && dist[cur]+Graph[cur][i] < dist[i]){
				dist[i] = dist[cur] + Graph[cur][i];
				path[i] = cur;
			}
		}
		
	}
}

void OutPut(VertexType v) {
	for(int i = 1;i <= nv;i++){
		cout << dist[i] << " ";
	}
	cout << endl;
	for(int i = 1;i <= nv; i++) {
		cout << path[i] << " ";
	}
	cout << endl;
	for(int i = 1;i <= nv;i++){
		if(i == v) continue;
		else{
			cout << v << "到"<<i<<"的最短路径:";
			stack<VertexType> p;
			int r = i;
			while(r != v){
				p.push(r);
				r = path[r];
			}
			while(!p.empty()){
				cout << p.top() << " ";
				p.pop();
			}

		}
		cout << endl;

	}

}

int main() {
	VertexType source = 2;
	Dijkstra(source);
	OutPut(source);
	cin >> source;

}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值