读取特征向量

from tensorflow.python.platform import gfile
image_data = gfile.FastGFile("E:\\TensorFlowpicture\\picture\\datasets\\0\\+¿+F2_0 - 副本 - 副本.jpg", 'rb').read()
import os
MODEL_DIR = 'E:\\TensorFlowpicture\\picture\\inception_dec_2015'
MODEL_FILE= 'tensorflow_inception_graph.pb'
BOTTLENECK_TENSOR_NAME = 'pool_3/_reshape:0'
JPEG_DATA_TENSOR_NAME = 'DecodeJpeg/contents:0'
import tensorflow as tf
from tensorflow.python.platform import gfile
with tf.Session() as sess:
    with gfile.FastGFile(os.path.join(MODEL_DIR, MODEL_FILE), 'rb') as f:
        graph_def = tf.GraphDef()
        graph_def.ParseFromString(f.read())
    bottleneck_tensor, jpeg_data_tensor = tf.import_graph_def(
        graph_def, return_elements=[BOTTLENECK_TENSOR_NAME, JPEG_DATA_TENSOR_NAME])
    bottleneck_values=sess.run(bottleneck_tensor,{jpeg_data_tensor:image_data})
    bottleneck_string=','.join(str(x) for x in bottleneck_tensor)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值