关于OriginPRO/Origin画图消锯齿以及平滑点与点之间的连接

使用环境(蓝色粗体字为特别注意内容)
1、软件环境:Win7 32 bit,OriginPro 2018C.

在使用Origin或者OriginPro画图的时候可能会遇到两个细节问题,1)曲线有锯齿,2)点与点之间的连线很尖锐,平滑。网上很多资料都提到Origin曲线平滑的问题,经笔者考究,所述的并不是本文中所指的点与点之间平滑的问题。废话少说,下面来看看原始数据:

0.75
0.95
0.27
0.65
0.98
0.42
0.54
0.68
0.98

将以上数据导入Origin,绘制点线图

上图就是Origin默认的绘图效果,不雅观是不是!存在两个问题,第一个问题就是线段有锯齿(当然只是显示效果,实际上矢量图是不会有锯齿的),第二个问题就是点与点之间的联系过于尖锐。针对以上问题,下面我们来优化一下。

1)去锯齿

点一下抗锯齿按钮即可

下面是抗锯齿效果

美观好多有木有!

2)双击曲线-Line(线条)-Modified Bezier曲线

 见证奇迹

 这下没这么突兀了,平滑过渡,给人一种很自然的感觉,感兴趣的同学可以多试试其他几种线性哦~

                                         爱科研 • 爱生活,我是Pang9998,谢谢大家~

 

 

ROC曲线是用于衡量分类模型性能的一种常用方法,它可以展示模型在不同阈值下的真正率(True Positive Rate)和假正率(False Positive Rate)之间的权衡关系。下面是使用Python中的`matplotlib`和`sklearn`库绘制ROC曲线的示例代码: ```python # 导入必要的库 import numpy as np import matplotlib.pyplot as plt from sklearn.metrics import roc_curve, auc # 生成随机数据 np.random.seed(0) y_true = np.random.randint(0, 2, size=100) y_score = np.random.rand(100) # 计算ROC曲线数据 fpr, tpr, thresholds = roc_curve(y_true, y_score, pos_label=1) roc_auc = auc(fpr, tpr) # 绘制ROC曲线 plt.figure() plt.plot(fpr, tpr, color='darkorange', lw=2, label='ROC curve (area = %0.2f)' % roc_auc) plt.plot([0, 1], [0, 1], color='navy', lw=2, linestyle='--') plt.xlim([0.0, 1.0]) plt.ylim([0.0, 1.05]) plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate') plt.title('Receiver operating characteristic example') plt.legend(loc="lower right") plt.show() ``` 在这个示例中,我们首先生成了一个随机的二分类数据集,其中`y_true`表示真实标签,`y_score`表示模型输出的预测得分。然后使用`sklearn`库中的`roc_curve`函数计算出ROC曲线的数据,其中`pos_label`参数表示正例的标签,默认为1。最后,使用`matplotlib`库绘制ROC曲线,并计算出曲线下面积(AUC)。 运行代码后,会生成一个简单的ROC曲线图,如下所示: ![ROC Curve](https://i.imgur.com/8Wb1O8S.png) 这个示例中的ROC曲线并不是很平滑,这是因为数据集太小,随机性太大。在实际应用中,ROC曲线通常会更加平滑,而且AUC值也会更高。
评论 11
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值