机器学习笔记——最小二乘法

这篇笔记介绍了机器学习中的线性回归模型,重点在于一元线性回归。通过一元线性回归模型的建立,阐述了误差函数的概念,并详细解释了最小二乘法在解决非方阵线性方程组中的应用,给出了求解最优参数θ的公式。文中还提到了使用MATLAB进行最小二乘法拟合参数的实践操作。
摘要由CSDN通过智能技术生成

本笔记是学习吴恩达的机器学习视频中所讲的知识,对应的代码实现,理论部分不做太多的记录,因为视频中讲的很清楚,所以只记录代码

本节介绍机器学习中常用的线性回归模型,鉴于是第一节,为循序渐进的学习,本节中将分析一元线性回归。

假设这里存在m组数据(x,y),其具体值如下(此处m=6):

y x
1.37 1.15
2.4 1.9
3.02 3.06
3.06 4.66
4.22 6.84
5.42 7.
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值