向量的范数、矩阵的范数

向量的范数

p-范数

在这里插入图片描述
常用的0-范数、1-范数、2-范数、无穷-范数其实都是p-范数的特殊情形。

0-范数

当p=0时,表示0-范数。它比较特殊,本质是一种计数,表示向量中非0元素的个数。

1-范数(也称L1范数)

当p=1时,表示1-范数。
在这里插入图片描述
它表示向量中各元素的绝对值之和。

2-范数(也称L2范数)

当p=2时,表示2-范数。
在这里插入图片描述
2-范数是向量中各元素的平方和的平方根。就是通常意义上的距离、通常意义上的模。

∞-范数

当p=无穷时,表示无穷-范数。
在这里插入图片描述
无穷范数表示向量中各元素绝对值最大的那个。

矩阵的范数

Frobenius 范数(F-范数、弗罗伯尼范数)

在这里插入图片描述
在这里插入图片描述
即矩阵的F-范数等于矩阵中各元素的平方和的平方根。

核范数(也称迹范数)

A是m*n阶矩阵,A的核范数定义为它的奇异值之和,所以核范数也称迹范数(trace norm):
在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值