二维正态分布随机变量

(X,Y)服从二维正态分布,它的概率密度为

f(x,y)=\frac{1}{2\pi \sigma _{1}\sigma _{2}\sqrt{1-\rho ^{2}}}exp\left \{ \frac{-1}{2(1-\rho ^{2})}\left [ \frac{(x-\mu _{1})^{2}}{\sigma _{1}^{2}}-2\rho \frac{(x-\mu 1)(y-\mu _{2})}{\sigma _{1}\sigma _{2}}+\frac{(y-\mu_{2})^{2}}{\sigma _{2}^{2}} \right ] \right \}

式中

\mu _{1}X的数学期望,\mu _{2}Y的数学期望;

\sigma _{1}X的标准差(也叫均方差),\sigma _{2}Y的标准差(也叫均方差);

\rhoXY的相关系数。

(X,Y)服从二维正态分布,XY相互独立的充要条件是相关系数\rho=0所以对于二维正态随机变量(X,Y)来说,XY不相关与XY相互独立是等价的。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值