卡方(chi-square)分布、卡方分布的直方图

定义

如果X_{1},X_{2},...,X_{k} 是k个相互独立的、标准正态分布的随机变量,即每个随机变量的均值0,方差为1 ,那么这k 个随机变量的平方和:

Q=\sum_{i=1}^{k}X_{i}^{2}

Q 服从自由度为 k的卡方分布,记为:Q\sim \chi _{k}^{2}

卡方分布的概率密度为:

p(x)=\frac{1}{2^{k/2}\Gamma (k/2)}x^{\frac{k}{2}-1}e^{-x/2},\: \: \: \: \: \: x>0

p(x)=0,\: \: \: \: \: \: \: other

其中\Gamma是Gamma函数。

从卡方分布中抽样并画出直方图

import numpy as np
import matplotlib.pyplot as plt

rng = np.random.default_rng()
# df是自由度,size是返回的数据形状
df, size = 1, 10000
sample = rng.chisquare(df, size)

# 在数据sample上计算并画出直方图
plt.hist(sample, bins='auto', density=True, label=f'df={df}')
plt.legend()
plt.show()

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值