1.卡方检验(Chi-square test)
卡方检验(Chi-square test),也称为χ²检验,是一种统计学中常用的假设检验方法,用于评估观察频数与期望频数之间是否存在显著差异。以下是进行卡方检验的基本步骤和概念:
-
检验假设:
零假设(H0):假设各总体率或总体构成比之间没有差别,或者两个变量之间没有关联性。备择假设(H1):假设各总体率或总体构成比之间有差别,或者两个变量之间存在关联性。 -
计算期望频数:
基于行和列的边际总和计算每一格的期望频数。期望频数的计算公式为:fcij = (Fxi * Fyi) / n
,其中Fxi
表示x变量各类别的边缘次数分配,Fyj
表示y变量各类别的边缘次数分配,n
为总次数。 -
其中,A为实际值,T为理论值。
X2用于衡量实际值与理论值的差异程度(也就是卡方检验的核心思想),包含了以下两个信息:
1. 实际值与理论值偏差的绝对大小(由于平方的存在,差异是被放大的)
2. 差异程度与理论值的相对大小 -
计算卡方值:
卡方值的计算公式为:χ² = ∑[(fo - fc)² / fc]
,其中fo
表示实际观测频数,fc
表示期望频数。 -
确定自由度:
对于一个R×C的列联表,自由度为(r-1)(c-1)
,其中r
是行数,c
是列数。 -
比较卡方值与临界值:
将计算得到的卡方值与卡方分布表中的临界值进行比较,或者计算P值。如果计算得到的卡方值大于临界值,或者P值小于显著性水平(如0.05),则拒绝零假设,认为差异具有统计学意义。 -
解释结果:
如果检验结果拒绝零假设,只能认为各总体率或总体构成比之间总的来说有差别,但不能说明它们彼此之间都有差别,或者某两者间有差别。
卡方检验适用于分类数据,不受数据分布限制,简单直观,易于理解。但是,它对小样本或期望频数太小的情况敏感,可能导致检验结果不可靠。卡方检验常用于推断多个总体率之间有无差别、几组总体构成比之间有无差别、两个变量之间有无关联性以及频数分布的拟合优度检验
2.如何解读卡方检验的结果?
解读卡方检验(Chi-square test)的结果时,需要关注以下几个关键点:
-
卡方统计量(Chi-square statistic):
这是卡方检验中计算出的统计量,用于衡量观察频数与期望频数之间的差异大小。卡方值越大,表示观察频数与期望频数之间的差异越大。 -
自由度(Degrees of freedom, df):
卡方检验的自由度取决于列联表的行数和列数。对于一个R行C列的列联表,自由度为df = (R - 1) * (C - 1)
。 -
P值(P-value):
P值是在零假设为真的前提下,观察到当前或更极端卡方统计量的概率。P值越小,表示结果越不可能由偶然因素导致,拒绝零假设的证据越强。 -
显著性水平(Significance level):
显著性水平通常用α表示,常用的α值为0.05或0.01。如果P值小于或等于显著性水平,我们拒绝零假设,认为结果具有统计学意义。 -
结论:
如果P值小于显著性水平(例如P < 0.05),则拒绝零假设,认为至少有一个类别的观察频数与期望频数有显著差异,或者两个分类变量之间存在关联。如果P值大于显著性水平,我们没有足够的证据拒绝零假设,认为结果可能是由偶然因素导致的,或者两个分类变量之间没有关联。 -
效应量(Effect size):
有时,即使P值显著,实际的效应量也可能很小。效应量指标,如Cramer's V或Phi系数,可以提供关于变量之间关联强度的信息。 -
列联表的构建:
检查列联表中的数据,确保每个单元格的期望频数都大于5。如果某些单元格的期望频数小于5,可能需要合并类别或使用精确检验(如Fisher精确检验)。 -
数据的假设检验:
卡方检验的前提是数据满足独立性、完整性和随机性。如果这些假设不成立,卡方检验的结果可能不可靠。 -
多重比较:
如果卡方检验显示显著性,可能需要进行多重比较检验来确定哪些组别之间存在差异。
解读卡方检验结果时,不仅要关注统计显著性,还要考虑实际意义和数据的背景。统计显著性并不总是等同于实际重要性。
3.卡方检验的P值和显著性水平如何决定研究结论?
卡方检验的P值和显著性水平(通常用α表示)是决定研究结论的关键因素。以下是它们如何影响结论的步骤:
-
设定显著性水平(α):
在进行卡方检验之前,研究者需要设定一个显著性水平,常见的选择是0.05或0.01,这意味着研究者愿意接受5%或1%的错误拒绝零假设(Type I error)的风险。 -
计算P值:
P值是在零假设为真的前提下,观察到的卡方统计量或更极端情况出现的概率。P值计算基于卡方分布,其自由度由列联表的维度决定。 -
比较P值和显著性水平:
如果P值小于或等于显著性水平(P ≤ α),则认为结果具有统计学意义,研究者拒绝零假设。这意味着观察到的数据与零假设下的预期数据存在显著差异,或者两个变量之间存在关联。如果P值大于显著性水平(P > α),则认为结果不具有统计学意义,研究者未能拒绝零假设。这表明没有足够的证据表明观察到的数据与预期数据存在显著差异,或者两个变量之间没有显著关联。 -
解释结论:
拒绝零假设时,研究者可以得出结论,认为至少在所选的显著性水平上,数据支持备择假设,即存在某种效应或关联。未能拒绝零假设时,研究者不能得出变量之间存在关联的结论,但这并不意味着变量之间绝对没有关联,可能只是因为样本量不足、效应太小或其他因素导致检验力不足。 -
考虑实际意义:
即使P值显著,研究者还需要考虑效应量的大小和实际意义。一个非常小的效应量可能在实际应用中并不重要,即使它是统计显著的。 -
报告结果:
在报告研究结果时,研究者应该提供P值和显著性水平,以及它们如何影响研究结论的详细信息。
总之,P值和显著性水平是统计推断中的重要工具,它们帮助研究者在数据中识别出真正的效应,同时控制犯第一类错误的风险。然而,它们只是研究结论的一部分,研究者还需要考虑其他因素,如样本大小、效应量、置信区间和研究的实际背景。
参考来源: