chi-squared test(卡方测验)

本文探讨了卡方测验在处理分类数据中的应用,使用了一个包含年龄、工作类别、种族和性别的数据集。通过计算比例差分和自由度,展示了如何分析性别分布的统计显著性,得出观测值与期望值之间的显著差异。在样本中,通过1000次试验计算卡方值并绘制直方图,确定了p值为0,表明结果统计上显著。同时,讨论了自由度的概念,以种族为例解释了自由度为1的情况。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Dataset

本文的数据集是来自卡方测试的分类数据,这个测试使我们能够确定观察一组分类的统计显著性值。

  • 样本例子:

age,workclass,fnlwgt,education,education_num,marital_status,occupation,relationship,race,sex,capital_gain,capital_loss,hours_per_week,native_country,high_income
39, State-gov, 77516, Bachelors, 13, Never-married, Adm-clerical, Not-in-family, White, Male, 2174, 0, 40, United-States, <=50K
50, Self-emp-not-inc, 83311, Bachelors, 13, Married-civ-spouse, Exec-managerial, Husband, White, Male, 0, 0, 13, United-States, <=50K
38, Private, 215646, HS-grad, 9, Divorced, Handlers-cleaners, Not-in-family, White, Male, 0, 0, 40, United-States, <=50K

  • 样本属性

age – how old the person is
workclass – the type of sector the person is employed in.(部门类型)
race – the race of the person.(种族ÿ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值