[Tensorflow] MNIST源码分析

源代码地址: https://github.com/tensorflow/tensorflow/tree/master/tensorflow/examples/tutorials/mnist


mnist.py

主要功能: 构建一个完全连接(fully connected)的MINST模型

推理 interface()

def inference(images, hidden1_units, hidden2_units):
  """
  功能: Build the MNIST model up to where it may be used for inference
  返回: 包含了预测结果的Tensor --- logits
  输入: 
      图像占位符
      第一个和第二个隐层的大小
  实现方式: 
      借助ReLu(Rectified Linear Units)激活函数,
      构建一对完全连接层(layers), 以及一个有着十个节点(node), 指明了输出logtis模型的线性层.
  """
  # Hidden 1 (隐层1)
  with tf.name_scope('hidden1'):
    # 每个变量在构建时, 都会获得初始化操作
    weights = tf.Variable(
        tf.truncated_normal([IMAGE_PIXELS, hidden1_units],
                            stddev=1.0 / math.sqrt(float(IMAGE_PIXELS))),
        name='weights')
        # 权重变量的名称其实是"hidden1/weights"
        # tf.truncated_normal()用来初始化weights: 根据所得到的均值和标准差, 生成一个随机分布
            # shape是一个二维的tensor: [IMAGE_PIXELS, hidden1_units]
                # 第一个维度代表该层中权重变量所连接(connect from)的单元数量
                # 第二个维度代表该层中权重变量所连接到的(connect to)单元数量
    biases = tf.Variable(tf.zeros([hidden1_units]),
                         name='biases')
        # tf.zero()用来初始化biases
            # shape: [hidden1_units], 指的是该层中所接到的(connect to)单元数量
    hidden1 = tf.nn.relu(tf.matmul(images, weights) + biases)
        # tf.nn.relu()是个激活函数
  # Hidden 2 (隐层2)
  with tf.name_scope('hidden2'):
    weights = tf.Variable(
        tf.truncated_normal([hidden1_units, hidden2_units],
                            stddev=1.0 / math.sqrt(float(hidden1_units))),
        name='weights')
    biases = tf.Variable(tf.zeros([hidden2_units]),
                         name='biases')
    hidden2 = tf.nn.relu(tf.matmul(hidden1, weights) + biases)
  # Linear
  with tf.name_scope('softmax_linear'):
    weights = tf.Variable(
        tf.truncated_normal([hidden2_units, NUM_CLASSES],
                            stddev=1.0 / math.sqrt(float(hidden2_units))),
        name='weights')
    biases = tf.Variable(tf.zeros([NUM_CLASSES]),
                         name='biases')
    logits = tf.matmul(hidden2, weights) + biases
        # 生成预测结果
  return logits

损失 lose()

def loss(logits, labels):
  """
  功能: 计算logits和labels之间的损失值(loss)
  输入: logits和labels
  返回: 包含了损失值(loss)的tensor
  """
  labels = tf.to_int64(labels)
  return tf.losses.sparse_softmax_cross_entropy(labels=labels, logits=logits)

训练 training()

def training(loss, learning_rate):
  """
  功能: 通过梯度下降将损失最小化
  输入:
    损失loss
    梯度下降的学习速率
  返回: 包含了训练操作(training op)输出结果的Tensor
  """
  # Add a scalar summary for the snapshot loss.
  tf.summary.scalar('loss', loss)
  # 根据给定的学习速率生成一个梯度下降算法op
  optimizer = tf.train.GradientDescentOptimizer(learning_rate)
  # 声明一个变量用于保存全局步骤进行到哪一步了
  global_step = tf.Variable(0, name='global_step', trainable=False)
  # 应用梯度下降算法去最小化损失(loss)
  train_op = optimizer.minimize(loss, global_step=global_step)
  return train_op

y_connected_feed.py

主要功能: 利用下载的数据集训练构建好的MNIST模型, 以数据反馈字典(feed dictionary)的形式作为输入

run_training()

  • 这是核心function()
  • 功能: 通过一系列步骤训练MNIST
def run_training():
  """通过一系列的步骤训练MNIST"""
  # 确保你下载了正确的数据
  # 解压这些输入并返回一个含有DataSet实例的字典
  data_sets = input_data.read_data_sets(FLAGS.input_data_dir, FLAGS.fake_data)

  # 模型将会建立在默认图上
  with tf.Graph().as_default():

    # 为数据创建占位符
    images_placeholder, labels_placeholder = placeholder_inputs(
        FLAGS.batch_size)

    # 推理预测节点(op)
    logits = mnist.inference(images_placeholder,
                             FLAGS.hidden1,
                             FLAGS.hidden2)

    # 损失节点(op)
    loss = mnist.loss(logits, labels_placeholder)

    # 训练节点(op)
    train_op = mnist.training(loss, FLAGS.learning_rate)

    # Add the Op to compare the logits to the labels during evaluation.
    eval_correct = mnist.evaluation(logits, labels_placeholder)

    # Build the summary Tensor based on the TF collection of Summaries.
    summary = tf.summary.merge_all()

    # 变量初始化节点(op)
    init = tf.global_variables_initializer()

    # Create a saver for writing training checkpoints.
    saver = tf.train.Saver()

    # 创建会话
    sess = tf.Session()

    # Instantiate a SummaryWriter to output summaries and the Graph.
    summary_writer = tf.summary.FileWriter(FLAGS.log_dir, sess.graph)

    # And then after everything is built:

    # 执行变量的初始化操作
    sess.run(init)

    # 开始循环训练
    for step in xrange(FLAGS.max_steps):
      start_time = time.time()

      # 向图表提供反馈
      # 为每一个训练步骤提供一个反馈字典(包括图像和标签)
      # fill_feed_dict()
          # 查询给定的DataSet
          # 索要下一批次batch_size的图像和标签
          # 与占位符相匹配的Tensor则会包含下一批次的图像和标签
      # feed_dict之后会传入sess.run()中, 为其训练提供输入样例
      feed_dict = fill_feed_dict(data_sets.train,
                                 images_placeholder,
                                 labels_placeholder)

      # Run one step of the model.  The return values are the activations
      # from the `train_op` (which is discarded) and the `loss` Op.  To
      # inspect the values of your Ops or variables, you may include them
      # in the list passed to sess.run() and the value tensors will be
      # returned in the tuple from the call.
      _, loss_value = sess.run([train_op, loss],
                               feed_dict=feed_dict)

      duration = time.time() - start_time

      # 定时输出当前的状态
      if step % 100 == 0:
        # 输出状态
        print('Step %d: loss = %.2f (%.3f sec)' % (step, loss_value, duration))
        # Update the events file.
        summary_str = sess.run(summary, feed_dict=feed_dict)
        summary_writer.add_summary(summary_str, step)
        summary_writer.flush()

      # 保存检查点并定期评估模型
      if (step + 1) % 1000 == 0 or (step + 1) == FLAGS.max_steps:
        checkpoint_file = os.path.join(FLAGS.log_dir, 'model.ckpt')
        saver.save(sess, checkpoint_file, global_step=step)
        # Evaluate against the training set.
        print('Training Data Eval:')
        do_eval(sess,
                eval_correct,
                images_placeholder,
                labels_placeholder,
                data_sets.train)
        # Evaluate against the validation set.
        print('Validation Data Eval:')
        do_eval(sess,
                eval_correct,
                images_placeholder,
                labels_placeholder,
                data_sets.validation)
        # Evaluate against the test set.
        print('Test Data Eval:')
        do_eval(sess,
                eval_correct,
                images_placeholder,
                labels_placeholder,
                data_sets.test)
  • 1
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 使用TensorFlow来训练并测试手写数字识别的MNIST数据集十分简单。首先,我们需要导入TensorFlowMNIST数据集: import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data 接下来,我们可以使用input_data.read_data_sets()函数加载MNIST数据集,其中参数为下载数据集的路径。我们可以将数据集分为训练集、验证集和测试集。这里我们将验证集作为模型的参数调整过程,测试集用于最终模型评估。 mnist = input_data.read_data_sets("MNIST_data/", one_hot=True) 接下来,我们可以使用TensorFlow创建一个简单的深度学习模型。首先,我们创建一个输入占位符,用于输入样本和标签。由于MNIST数据集是28x28的图像,我们将其展平为一个784维的向量。 x = tf.placeholder(tf.float32, [None, 784]) y = tf.placeholder(tf.float32, [None, 10]) 接下来,我们可以定义一个简单的全连接神经网络,包含一个隐藏层和一个输出层。我们使用ReLU激活函数,并使用交叉熵作为损失函数。 hidden_layer = tf.layers.dense(x, 128, activation=tf.nn.relu) output_layer = tf.layers.dense(hidden_layer, 10, activation=None, name="output") cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=output_layer, labels=y)) 然后,我们可以使用梯度下降优化器来最小化损失函数,并定义正确预测的准确率。这样就完成了模型的构建。 train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy) correct_prediction = tf.equal(tf.argmax(output_layer, 1), tf.argmax(y, 1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) 接下来,我们可以在一个会话中运行模型。在每次迭代中,我们从训练集中随机选择一批样本进行训练。在验证集上进行模型的参数调整过程,最后在测试集上评估模型的准确率。 with tf.Session() as sess: sess.run(tf.global_variables_initializer()) for i in range(1000): batch_x, batch_y = mnist.train.next_batch(100) sess.run(train_step, feed_dict={x: batch_x, y: batch_y}) val_accuracy = sess.run(accuracy, feed_dict={x: mnist.validation.images, y: mnist.validation.labels}) print("Validation Accuracy:", val_accuracy) test_accuracy = sess.run(accuracy, feed_dict={x: mnist.test.images, y: mnist.test.labels}) print("Test Accuracy:", test_accuracy) 通过这个简单的代码,我们可以使用TensorFlow训练并测试MNIST数据集,并得到测试集上的准确率。 ### 回答2: gan tensorflow mnist是指使用TensorFlow框架训练生成对抗网络(GAN)来生成手写数字图像的任务。 首先,手写数字数据集是一个非常常见且经典的机器学习数据集。MNIST数据集包含了由0到9之间的手写数字的图像样本。在gan tensorflow mnist任务中,我们的目标是使用GAN来生成与这些手写数字样本类似的新图像。 GAN是一种由生成器和判别器组成的模型。生成器任务是生成看起来真实的图像,而判别器任务是判断给定图像是真实的(来自训练数据集)还是生成的(来自生成器)。这两个模型通过对抗训练来相互竞争和提高性能。 在gan tensorflow mnist任务中,我们首先需要准备和加载MNIST数据集。利用TensorFlow的函数和工具,我们可以轻松地加载和处理这些图像。 接下来,我们定义生成器和判别器模型。生成器模型通常由一系列的卷积、反卷积和激活函数层组成,以逐渐生成高质量的图像。判别器模型则类似于一个二分类器,它接收图像作为输入并输出真实或生成的预测结果。 我们使用TensorFlow的优化器和损失函数定义GAN模型的训练过程。生成器的目标是误导判别器,使其将生成的图像误认为是真实图像,从而最大限度地降低判别器的损失函数。判别器的目标是准确地区分真实和生成的图像,从而最大限度地降低自身的损失函数。 最后,我们使用训练数据集来训练GAN模型。通过多次迭代,生成器和判别器的性能会随着时间的推移而得到改善。一旦训练完成,我们可以使用生成器模型来生成新的手写数字图像。 总结来说,gan tensorflow mnist是指使用TensorFlow框架训练生成对抗网络来生成手写数字图像的任务。通过定义生成器和判别器模型,使用优化器和损失函数进行训练,我们可以生成类似于MNIST数据集手写数字的新图像。 ### 回答3: 用TensorFlow训练MNIST数据集可以实现手写数字的分类任务。首先我们需要导入相关库和模块,如tensorflow、keras以及MNIST数据集。接着,我们定义模型的网络结构,可以选择卷积神经网络(CNN)或者全连接神经网络(DNN)。对于MNIST数据集,我们可以选择使用CNN,因为它能更好地处理图像数据。 通过调用Keras中的Sequential模型来定义网络结构,可以添加多个层(如卷积层、池化层、全连接层等),用来提取特征和做出分类。其中,输入层的大小与MNIST图片的大小相对应,输出层的大小等于类别的数量(即0~9的数字)。同时,我们可以选择优化器(如Adam)、损失函数(如交叉熵)和评估指标(如准确率)。 接下来,我们用模型编译来配置模型的学习过程。在编译时,我们可以设置优化器、损失函数和评估指标。然后,我们用训练数据对模型进行拟合,通过迭代优化来调整模型的权重和偏置。迭代次数可以根据需要进行调整,以达到训练效果的需求。 训练结束后,我们可以使用测试数据对模型进行评估,获得模型在测试集上的准确率。最后,我们可以使用模型对新的未知数据进行预测,得到相应的分类结果。 综上所述,使用TensorFlow训练MNIST数据集可以实现手写数字的分类任务,通过定义模型结构、编译模型、拟合模型、评估模型和预测来完成整个过程。这个过程需要一定的编程知识和理解深度学习的原理,但TensorFlow提供了方便的api和文档,使我们能够相对容易地实现这个任务。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值