中文句子相似度判断是一个重要的自然语言处理任务,以下是一些常用的模型及其特点,适合不同需求:
1. SimCSE / CoSENT
特点:
- SimCSE 是一种基于无监督或有监督对比学习的方法,用于句子表示学习。
- CoSENT 是对 SimCSE 的一种改进,使用排序损失函数,提升了中文语义相似度任务的表现。
推荐模型:
shibing624/text2vec-base-chinese
GanymedeNil/text2vec-large-chinese
适用场景:
- 语义相似度计算
- 检索排序
- 文本匹配任务
优点:
- 训练时间短,推理速度快。
- 针对中文优化,效果好。
使用示例:
from transformers import AutoTokenizer, AutoModel
import torch
from torch.nn.functional import cosine_similarity
# 加载模型和分词器
model_name = "shibing624/text2vec-base-chinese"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModel.from_pretrained(model_name)
# 获取句子向量
def get_embedding(sentence):
inputs = tokenizer(sentence, return_tensors='pt', padding=True, truncation=True)
with torch.no_grad():
outputs = model(**inputs)
embedding = outputs.last_hidden_state.mean(dim=1) # 平均池化
return embedding
# 比较两个句子
sentence1 = "我喜欢学习"
sentence2 = "我热爱学习"
embedding1 = get_embedding(sentence1)
embedding2 = get_embedding(sentence2)
similarity = cosine_similarity(embedding1, embedding2).item()
print(f"相似度:{similarity:.4f}")
2. BERT / RoBERTa
特点:
- 经典的预训练语言模型,适合下游任务微调。
- 对中文进行了适配,常见的模型有
bert-base-chinese
和hfl/chinese-roberta-wwm-ext
.
推荐模型:
bert-base-chinese
hfl/chinese-roberta-wwm-ext
适用场景:
- 微调后用于语义匹配任务。
- 大规模语料上效果不错。
优点:
- 通用性强,可以用于多种任务。
- 社区支持广泛,文档丰富。
使用示例:
需要在语义匹配任务上进行微调,或者直接使用池化后的向量计算相似度。
3. ERNIE(百度飞桨)
特点:
- 适合中文场景,包含更多中文语义知识(例如知识图谱)。
- 在很多中文任务上效果优于 BERT。
推荐模型:
nghuyong/ernie-3.0-base-zh
适用场景:
- 知识驱动的场景(例如问答、推理)。
- 中文语义相关任务。
优点:
- 对中文优化得非常好。
- 可结合知识图谱增强语义理解。
4. SENTENCE-BERT(SBERT)
特点:
- 基于 BERT 的句子级嵌入优化模型。
- 适合语义相似度计算和检索任务。
推荐模型:
uer/sbert-base-chinese-nli
适用场景:
- 语义相似度
- 问答对匹配
- 短文本语义搜索
优点:
- 支持多语言,中文效果较好。
- 能生成高效的句子级嵌入。
5. Embedding-based 方法(如 FastText, Word2Vec, GloVe)
特点:
- 经典的词嵌入方法,可以生成词向量,通过平均词向量生成句子向量。
- 对于大规模的语料,有较好的表现。
适用场景:
- 轻量级的任务,不需要复杂的模型。
- 资源有限的设备(如嵌入式环境)。
优点:
- 训练快,占用资源少。
- 简单直接,但效果略逊于深度模型。
6. GPT 系列模型(ChatGPT、GPT-3/4)
特点:
- 强大的语言理解能力,支持多语言场景。
- 可以通过 prompt 工程进行句子相似度判断。
适用场景:
- 无需训练、直接生成相似度的场景。
- 高质量语义相似度评估。
优点:
- 不需要预训练或微调,直接生成。
- 语义理解能力强,适合复杂场景。
缺点:
- 模型调用成本较高。
- 部分需要 API 访问。
模型对比
模型 | 优点 | 缺点 | 推荐场景 |
---|---|---|---|
SimCSE / CoSENT | 速度快,中文优化好,效果好 | 需要预训练模型和环境支持 | 短文本相似度任务 |
BERT / RoBERTa | 通用性强,社区支持多 | 模型大,速度相对慢 | 需要微调的场景 |
ERNIE | 中文优化非常好,适合知识驱动场景 | 对英文或多语言支持较差 | 知识推理任务 |
SBERT | 嵌入生成高效 | 模型支持的中文优化有限 | 语义检索、快速计算 |
Embedding-based | 简单高效 | 效果较差,难以捕捉复杂语义 | 资源受限的轻量场景 |
GPT 系列 | 无需训练,直接生成高质量语义相似度判断 | 成本高,依赖外部 API | 复杂语义相似度计算 |
推荐
- 如果追求高效、效果好,推荐 SimCSE / CoSENT。
- 如果语义复杂且需要泛化,推荐 GPT 系列模型。
- 对中文理解特别深的场景,推荐 ERNIE。
选择模型时,应根据任务复杂度、资源限制和实际需求权衡。