最近在做三维重建项目,发现在软件环境配置过程中,对于硬件来说最稳定的CPU和GPU组合是Intel和英伟达的。开始对CPU和GPU做一些调研。
CPU
CPU,“学名”:中央处理器,通俗讲是计算机的大脑,负责逻辑运算。由多个单元组成,并由集成电路制造成。市场上主要有Intel和AMD牌子。Intel主要有Corei系列,AMD有锐龙R系列,数字越大,能力越强。新买的笔记本左下角都有标注处理器的型号。国产也有一些品牌,例如飞腾,鲲鹏、龙芯等(名字都好大气,代表着“中国芯”坚定的信念)。
衡量CPU性能是,我们经常会提到核心和线程。核心指的是独立的CPU单元组,数量越多性能越好。可以从设备管理器->处理器中看到自己的计算机是几核的,一般情况下是4核。4核以下适用于正常办公,如果是从事图形图像等相关专业人员,例如设计和影视等,或者玩3D游戏应该要6核及6核以上了。线程指的是逻辑处理单元,负责cpu的调度和分配,同步进行多项作业,合理利用CPU资源。一般就是4核4线程、4核8线程,以此类推6-6,6-12。
还有一些其他指标,主频:指的是CPU内核的时钟频率,也就是运算速度,主频越高越好。缓存:是CPU和内存之间的临时存储器。
GPU
GPU,“学名”:图形处理器,我们经常说的显卡。深度学习火起来和GPU息息相关。有数百数千个内核,并行运行大量计算。现在英伟达的显卡是全球的领导者,但是这两年价格长的太快了。还有Intel、AMD。ARM、高通的显卡是移动GPU。
Nvidia 有三个系列的GPU,分别是Tesla、Geforce和Quadro, 他们支持通用GPU,并且采用了相同的架构设计(GPU架构介绍,每个系列的产品有三种架构Pascal/Volta/Turing,Turing是新一代架构与Volta类似,但是具有光线追踪和光栅化渲染的混合渲染技术。三个系列的产品和定位不同,就像是手机的低端机和高端机一样,并且在软硬件的设计和支持上都存在差异。
Tesla是专业的通用GPU,价格相对较高,Quadro的定位是专业用途显卡。而Geforce价格较低,经常被当做另外两个专业产品的替代品来用。Tesla比Geforce计算精度高,专门用于深度学习。