周报
原反补移码
这个作者很懒,什么都没留下…
展开
-
2020-12-10周报
一、做了实验,发现自己单用decoder(配准)来训练配准参数。效果也不是很提升明显。lspigSummaryDice score: 0.6597795844078064 (0.09940144419670105)Jacc score: 0.3953123986721039 (0.09658797830343246)Jacobian determinant: 0.004486850928515196 (0.0003765725123230368)sliverSummaryDi原创 2020-12-10 14:15:49 · 184 阅读 · 0 评论 -
2020-12-3周报
一、实验 1. 训练两个Decoder,共享一个Encoder。其中配准的Decoder网络的损失由两部分组成一个是regulation loss 和 similarity loss。第二个Decoder用的是similarity loss。其中similarity loss可以有很多,比如NCC,MSE等。我采用的是级联递归网络那文章中的代码采用的。其中用NCC和MSE的实验还在跑,因为是3D图像,所以速度很慢。而且还两次都莫名其妙被kill 过两次。下面是四个数据集跑出来的结果。相比...原创 2020-12-03 11:27:06 · 210 阅读 · 0 评论