Automatic ice thickness estimation in radar imagery based on charged particles concept

第二篇

Automatic ice thickness estimation in radar imagery based on charged particles concept

(基于带点粒子概念的雷达图像冰厚自动估计)

作者:Maryam Rahnemoonfar, Amin Abbasi Habashi, John Paden, Geoffrey C. Fox

conference:IAGRSS     2017年

总结:

    本文是基于带点粒子的概念对雷达图像的冰层表面和底部边界进行估计。创新点在于将图像每个像素看成一个个带电粒子,利用库伦静电定律来对冰层边界进行检测。主要步骤是:1.利用各向异性扩散的方法对图像进行增强并保留边缘,2.利用ElFi(电场)方法来对冰层表面和底部边界进行检测,3.将第二步产生的轮廓做一个投影形成线状分割。实验采用的数据集是CReSIS(2009),评价标准是准确率、召回率和两者权衡的F测量值。对323幅图像进行实验评价,准确率为84%,召回率为79%,F测量值为81%。本文对冰层表面和底部边界检测的方法与人工标记的方法相比具有较高的准确率。本文的缺点在于并没有验证这种方法在不同的情况下的鲁棒性(例如:多种的地下拓扑结构,底部边界不明显等等)。

 

问题1:电场的方法如何能检测到冰层的边界?

这种方法的检测应该和(基于电势能改进区域生长脑肿瘤图像分割)论文的方法类似。主要依据的是边界处像素灰度值小,由于像素与电荷进行对应,那么边界处的电荷形成电势能就较小,从而当检测到电势能最小时(或者电势能满足某一阈值区间)停止检测,这样也就检测到了边界。这种方法最终检测的到是轮廓边界,所以文章的下一步要进行投影。

基于电势能改进区域生长脑肿瘤图像分割https://max.book118.com/html/2018/0929/8033031034001125.shtm

以上个人理解总结,如有不对请指正。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值