【算法】回溯算法—组合问题

介绍

回溯算法实际上是 一个类似枚举的搜索尝试过程,主要是在搜索尝试过程中寻找问题的解,当发现已不满足求解条件时,就“回溯”返回,尝试别的路径。
是一种暴力搜索算法,它通过构建解的所有可能性来解决问题。

应用问题

  • 组合问题:N个数里面按一定规则找出k个数的集合
  • 子集问题:一个N个数的集合里有多少符合条件的子集
  • 切割问题:一个字符串按一定规则有几种切割方式
  • 排列问题:N个数按一定规则全排列,有几种排列方式
  • 棋盘问题:N皇后,解数独等等

基本流程

  • 选择:在当前步骤中,从可选的选择中选择一个。
  • 验证:检查选择是否满足问题的约束条件和限制。
  • 递归:进入下一步骤,继续选择和验证。
  • 回溯:如果当前选择不满足条件,撤销这个选择,回溯到上一步,尝试其他选项。

回溯法解决的问题都可以抽象为树形结构
集合的大小就构成了树的宽度,递归的深度就构成了树的深度。
横向for循环,纵向递归

算法模版

void backtracking(参数) {
    if (终止条件) {
        存放结果;
        return;
    }

    for (选择:本层集合中元素) {
        处理节点;
        backtracking(路径,选择列表); // 递归
        回溯(撤销处理结果)
    }
}

回溯三部曲:

  1. 递归函数的参数和返回值:返回值一般为void
  2. 确定终止条件
  3. 单层搜索的逻辑

例题

(1)组合

77. 组合 - 力扣(LeetCode)

给定两个整数 nk,返回范围 [1, n] 中所有可能的 k 个数的组合。

你可以按 任何顺序 返回答案。

示例 1:

输入:n = 4, k = 2
输出:
[
  [2,4],
  [3,4],
  [2,3],
  [1,2],
  [1,3],
  [1,4],
]

组合是无序的,[1,2]和[2,1]一致

每一个节点都是一层for循环,从startIndex开始

newtree

  1. 递归函数的参数和返回值:

    void backTracking(int n, int k, int startIndex)
    
  2. 确定终止条件

    到达叶子节点,path数组大小到达k

    if (pathtop == k) 
    
  3. 单层搜索的逻辑

    for循环从startIndexn中选择数字(startIndex控制每次搜索时的起始位置,本题第一次调用时传1

    先处理当前i节点;
    再递归:传入i+1控制下一层递归起始位置;
    回溯:退出递归调用之后,需要回溯到之前的状态,来尝试其他数字并构建其他组合。因此 pathtop 减 1,i + 1退出递归后在当前循环还是i

    for (int i = startIndex; i <= n; i++) {
            path[pathtop++] = i; // 存入结果
            backTracking(n, k, i + 1); // 递归,传入i+1,下一层递归起始位置
            pathtop--;
    }
    

    for循环横向遍历,递归纵向遍历,回溯不断调整结果集

int* path;
int pathtop;
int** ret;
int rettop;
void backTracking(int n, int k, int startIndex) {
    if (pathtop == k) {
        int* temp = (int*)malloc(sizeof(int) * k);
        for (int i = 0; i < k; i++) {
            temp[i] = path[i];
        }
        ret[rettop++] = temp;
        return;
    }
    for (int i = startIndex; i <= n; i++) {
        path[pathtop++] = i;
        backTracking(n, k, i + 1);
        pathtop--;
    }
}
int** combine(int n, int k, int* returnSize, int** returnColumnSizes) {
    pathtop = 0;
    rettop = 0;
    path = (int*)malloc(sizeof(int) * k);
    ret = (int**)malloc(sizeof(int*) * 1000000);
    backTracking(n, k, 1);
    
    *returnSize = rettop;
    (*returnColumnSizes) = (int*)malloc(sizeof(int) * (*returnSize));
    for (int i = 0; i < (*returnSize); i++) {
        (*returnColumnSizes)[i] = k;
    }
    return ret;
}

剪枝

时间复杂度:叶子个数乘叶子到根的路径长度

for循环在寻找起点的时候要有一个范围,如果这个起点到集合终止之间的元素已经不够题目要求的k个元素了,就没有必要搜索了

例如如果n = 4, k = 4情况下

nk4

已经选择的数量:pathTop

还需要选择的数量:k - pathTop

确保后续至少有k - pathTop个元素可以选择。

集合n中至多遍历到n - (k - pathTop) + 1

for循环遍历区间:[startIndex, n - (k - pathTop) + 1]

举例:
[1,2,3,4]
n=4 k=3
假设选了0个,那么还要选三个,那么至多从n - 3 + 1 = 2

 for (int i = startIndex; i <= (n - k + pathtop + 1); i++) {
        path[pathtop++] = i;
        backTracking(n, k, i + 1);
        pathtop--;
 }

(2)电话号码的字母组合

17. 电话号码的字母组合 - 力扣(LeetCode)

给定一个仅包含数字 2-9 的字符串,返回所有它能表示的字母组合。答案可以按 任意顺序 返回。

给出数字到字母的映射如下(与电话按键相同)。注意 1 不对应任何字母。在这里插入图片描述

示例 1:

输入:digits = "23"
输出:["ad","ae","af","bd","be","bf","cd","ce","cf"]

示例 2:

输入:digits = ""
输出:[]
  1. 递归函数的参数和返回值:
void backTracking(char* digits, int length, int index)
  1. 确定终止条件

遍历到字符串末尾

if (pathTop == length) 
  1. 单层搜索的逻辑

创建一个map[10][5] 来存储不同号码对应的字母

for循环遍历的是map[i] 的长度
在这里插入图片描述

char** ret;
int retTop;
char* path;
int pathTop;
char map[10][5] = {"\0",    "\0",    "abc\0",  "def\0", "ghi\0",
                   "jkl\0", "mno\0", "pqrs\0", "tuv\0", "wxyz\0"};
void backTracking(char* digits, int length, int index) {
    // 当遍历到字符串末尾时,将当前组合加入结果集中
    if (index == length) {
        char* temp = (char*)malloc(sizeof(char) * (pathTop + 1));
        memcpy(temp, path, sizeof(char) * pathTop);
        temp[pathTop] = '\0';
        ret[retTop++] = temp; 
        return;
    }
    // 获取当前数字对应的字符集合的长度
    int num = digits[index] - '0';
    int letterLength = strlen(map[num]);
    // 遍历当前数字对应的字符集合
    for (int i = 0; i < letterLength; i++) {
        // 将当前字符加入当前组合中
        path[pathTop++] = map[num][i];
        backTracking(digits, length, index + 1);
        pathTop--;
    }
}

// 主函数,生成数字键盘对应的所有字母组合
char** letterCombinations(char* digits, int* returnSize) {
    retTop = pathTop = 0;
    int maxPathLength = strlen(digits) * 4; 
    
    path = (char*)malloc(sizeof(char) * (maxPathLength + 1));
    ret = (char**)malloc(sizeof(char*) * 1000);
    
    // 初始化结果集数组为空
    for (int i = 0; i < 1000; ++i) {
        ret[i] = NULL;
    }
    int length = strlen(digits);
    
    // 输入字符串长度为0返回空结果集
    if (length == 0) {
        *returnSize = 0;
        return ret;
    }
    
    backTracking(digits, length, 0);
    
    *returnSize = retTop; 
    return ret; 
}

参考:

  1. 代码随想录 (programmercarl.com)
  2. 回溯算法套路②组合型回溯+剪枝
  3. 17. 电话号码的字母组合 - 力扣(LeetCode)


如有错误烦请指正。

感谢您的阅读

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值