一、复数的概念
1.1 数的概念的发展
数的概念是从实践中产生和发展起来的。早在原始社会末期,由于记数的需要,人们就建立起自然熟的概念。自然数的全体构成自然数集 N 。
随着生产和科学的发展,熟的概念也得到了发展。
为了表示各种具有相反意义的量以及满足记数法的要求,人们引进了零和负数,把自然数看作正整数,把正整数、零、负整数合并在一起,构成整数集 Z 。
为了解决测量、分配中遇到的将某些量进行等分的问题,人们又引进了有理数,规定他们就是一切形如 mn 的数,其中 m∈Z,n∈N 。这样,就把整数集 Z 扩大为有理数集 Q 。显然, Z⊂Q 。如果把整数看作分母为 1 的分数,那么有理数实际上就是分数集。
每一个有理数都可以表示成整数、有限小数或循环节不为 0 的循环小数;反过来,整数、有限小数或循环节不为 0 的循环小数也都是有理数。如果把整数、有限小数都看作循环节为 0 的循环小数,那么有理数集实际上就是循环小数的集合。
为了解决有些量与量之间的比值(例如用正方形的边长去度量它的对角线所得结果)不能用有理数表示的矛盾,人们又引入了无理数。所谓无理数,就是无限不循环小数。有理数集与无理数集合并在一起,构成实数集 R 。因为有理数都可以看作循环小数(包括整数、有限小数),无理数都是无限不循环小数,所以实数集就是小数集。
从解方程来看,方程 x+5=3 在自然数集 N 中无解,在整数集 Z 中就有一个解 x=−2 ;方程 3x=5 字整数集 Z 中无解,在有理数集 Q 中就有一个解 x=53 ;方程 x2=2 在有理数集 Q 中无解,在实数集 R 中就有两个解 x=±2√ 。但是,熟的范围扩充到实数集 R 以后,象 x2=−1 这样的方程还是无解,因为没有一个实数的平方等于 −1 。在十六世纪,由于解方程的需要,人们开始引进一个新数 i ,叫做虚数单位,并规定:
- 它的平方等于
−1
,即
i2=−1;
- 实数与它进行四则运算时,所有的加、乘运算律仍然成立。
在这种规定下, i 可以与实数 b 相乘,再同实数 a 相加,由于满足乘法交换律及加法交换律,从而可以把结果写成 a+bi 。人们把它们叫做复数。全体复数所成的集合,一般用字母 C 来表示。[1]
[1] C 是英文词组Complex numbers(复数)的第一个字母。
在这种规定下, i 就是 −1 的一个平方根。因此,方程 x2=−1 在复数集 C 中就至少有一个解 x=i 。
十八世纪以后,复数在数学、力学和电学中得到了应用。从此对它的研究日益展开。现在复数已成为科学技术中普遍使用的一种数学工具。
1.2 复数的有关概念
复数 a+bi ( a,b∈R 。以后说复数 a+bi 时,都有 a,b∈R ),当 b=0 时,就是实数;当 b≠0 时,叫做虚数,当 a=0,b≠0 时,叫做纯虚数; a 与 b 分别叫做复数 a+bi 的实部与虚部。例如, 3+4i,−12−2√i,−0.5i 都是虚数,它们的实部分别是 3,−12,0 ,虚部分别是 4,−2√,−0.5 。
显然,实数集 R 是复数集 C 的真子集,即 R⊂C 。
如果两个复数 a+bi 与 c+di 的实部与虚部分别相等,我们就说这两个复数相等,记作 a+bi=c+di ,这就是说,如果 a,b,c,d∈R ,那么
例:已知 (2x−1)+i=y−(3−y)i ,其中 x,y∈R 。求 x 与 y 。
解:根据复数相等的定义,得方程组 {2x−1=y,1=−(3−y). 解得 x=52,y=4 。
从复数相等的定义,我们知道,任何一个复数 z=a+bi ,都可以由一个有顺序的实数对 (a,b) 唯一确定。这就使我们能借用平面直角坐标系来表示复数 z=a+bi 。如图1,点 Z 的横坐标是 a ,纵坐标是 b ,复数 z=a+bi 可用点 Z(a,b) 来表示。这个建立了直角坐标系表示复数的平面叫做复平面, x 轴叫做实轴, y 轴除去原点的部分叫做虚轴(因为原点表示实数 0 ,原点不在虚轴上)。表示实数的点都在实轴上,表示纯虚数的点都在轴上。
很明显,按照这种表示方法,每一个复数,有复平面内唯一的一个点和它对应;反过来,复平面内的每一个点,有唯一的一个复数和它对应。由此可知,复数集 C 和复平面内所有的点所成的集合是一一对应的。这是复数的一个几何意义。
当两个复数实部相等,虚部互为相反数时,这两个复数叫做互为共轭复数(当虚部不等于 0 时也叫做互为共轭虚数)。复数 z 的共轭复数可以用 z¯¯¯ 来表示,也就是说,复数 z=a+bi 的共轭复数是 z¯¯¯=a−bi 。显然,复平面内表示两个互为共轭复数的点 Z 与 Z¯¯¯¯ 关于实轴对称(图2),而实数 a (即虚部为 0 的复数)的共轭复数仍是 a 本身。
两个实数可以比较大小。但是两个复数,如果不全是实数,就不能比较它们的大小。对于这个命题的证明,将稍后给出。
1.3 复数的向量表示
在物理学中,我们经常遇到力、速度、加速度、电场强度等,这些量,除了要考虑它们的绝对值大小以外,还要考虑它们的方向。我们把这种既有绝对值大小又有方向的量叫做向量。向量可以用有向线段来表示,线段的长度就是这个向量的绝对值(叫做这个向量的模),线段的方向(用箭头表示)就是这个向量的方向。模相等且方向相同的向量,不管它们的起点在哪里,都认为是相等的向量。在这一规定下,向量可以根据需要进行平移。模为零的向量(它的方向是任意的)叫做零向量。规定所有零向量相等。
复数可以用向量来表示。如图3,设复平面内的点 Z 表示复数 z=a+bi ,连结 OZ ,如果我们把有向线段 OZ (方向是从点 O 指向点 Z )看成向量,记作 OZ−→−− ,就把复数同向量联系起来了。很明显,向量 OZ−→−− 是由点 Z 唯一确定的;反过来,点 Z 也可由向量 OZ−→−− 唯一确定。因此,复数集 C 与复平面内所有以原点 O 为起点的向量所成的集合也是一一对应的。为方便起见,我们常把复数 z=a+bi 说成点 Z 或者说成向量 OZ−→−− 。此外,我们还规定,相等的向量表示同一个复数。
图3中的向量 OZ−→−− 的模(即有向线段 OZ 的长度) r 叫做复数 z=a+bi 的模(或绝对值)记作 |z| 或 |a+bi| 。如果 b=0 ,那么 z=a+bi 是一个实数 a 它的模就等于 |a| (即 a 在实数意义上的绝对值)。容易看出,
例1:求复数 z1=3+4i 及 z2=−12−2√i 的模,并且比较它们的模的大小。
解: |z1|=32+42−−−−−−√=5,|z2|=(−12)2+(2√)2−−−−−−−−−−−−√=32. 又 5>32 ,故 |z1|>|z2| 。
例2:设
z∈C
,满足下列条件的点
Z
的集合是什么图形?
(1)
|z|=4
;(2)
2<|z|<4
。
解:(1)复数
z
的模等于
4
,就是说,向量
→OZ
的模(即点
Z
与原点
O
的距离)等于
4
,所以满足条件
|z|=4
的点
Z
的集合是以原点
O
为圆心,以
4
为半径的圆。
(2)不等式
2<|z|<4
可化为不等式组
{|z|<4,|z|>2.
不等式
|z|<4
的解集是圆
|z|=4
内部所有的点组成的集合,不等式
|z|>2
的解集是圆
|z|=2
外部所有的点组成的集合,这两个集合的交集,就是上述不等式组的解集,也就是满足条件
2<|z|<4
的点
Z
的集合。容易看出,所求的集合是以原点
O
为圆心,以
2
及
4
为半径的圆所夹的圆环,但不包括圆环的边界(图4)。
二、复数的运算
2.1 复数的加法与减法
复数的加法规定按照以下的法则进行:设 z1=a+bi,z2=c+di 是任意两个复数,那么它们的和:
容易验证,复数的加法满足交换律、结合律,即对任意 z1,z2,z3∈R ,有
从物理学知道,要求出作用于同一点 O 、但不在同一直线上的两个力 F1−→− 与 F2−→− 的合力,只要用表示 F1−→− 与 F2−→− 的向量为相邻的两边画一个平行四边形,那么,平行四边形中,以力的作用点 O 为起点的那条对角线所表示的向量就是合力 F−→ (图5-1)。这个法则通常叫做向量加法的平行四边形法则。
复数用向量来表示,如果与这些复数对应的向量不在同一直线上,那么这些复数的加法就可以按照向量加法的平行四边形法则来进行。下面我们来证明这一事实。
设 OZ1−→−−− 及 OZ2−→−−− 分别与复数 a+bi 及 c+di 对应,且 OZ1−→−−−,OZ2−→−−− 不在同一直线上(图5-2)。以 OZ1−→−−− 及 OZ2−→−−− 为两条邻边画平行四边形 OZ1ZZ2 ,画 x 轴的垂线 PZ1,QZ2 及 RZ ,并且画 Z1S⊥RZ ,容易证明
由此可知,求两个复数的和,可以先画出这两个复数对应的向量 OZ1−→−−−,OZ2−→−−− ,如果 OZ1−→−−−,OZ2−→−−− 不在同一直线上,再以这两个向量为两条邻边画平行四边形,那么与这个平行四边的对角线 OZ 所表示的向量 OZ−→−− 对应的复数,就是所求两个复数的和。
如果 OZ1−→−−−,OZ2−→−−− 在同一直线上,我们可以画出一个“压扁”了的平行四边形,并据此画出它的对角线来表示 OZ1−→−−−,OZ2−→−−− 的和。
总之,复数的加法可以按照向量的加法法则来进行,这是复数加法的几何意义。
下面再来看复数的减法。
复数的减法规定是加法的逆运算,即把满足
现设 OZ−→−− 与复数 a+bi 对应, OZ1−→−−− 与复数 c+di 对应(图6)。以 OZ−→−− 为一条对角线, OZ1−→−−− 为一条边画平行四边形,那么这个平行四边形的另一边, OZ2−→−−− 所表示的向量, OZ2−→−−− 就与复数 (a−c)+(b−d)i 对应。因为 Z1Z=//OZ2 ,所以向量 Z1Z−→−−− 也与这个差对应。
这就是说,两个复数的差 z−z1 (即 OZ−→−−−OZ1−→−−− )与连结两个向量终点并指向被减数的向量对应。这就是复数减法的几何意义。
由上所述,我们可以看出,复数的加(减)法与多项式的加(减)法是类似的,就是把复数的实部与实部、虚部与虚部分别相加(减),即
例1:计算 (5−6i)+(−2−i)−(3+4i) 。
解: (5−6i)+(−2−i)−(3+4i)=(5−2−3)+(−6−1−4)i=−11i 。
例2:根据复数的几何意义及向量表示,求复平面内两点间的距离公式。
解:如图7,设复平面内的任意两点 Z1,Z2 分别表示复数 z1=x1+y1i,z2=x2+y2i ,那么 Z1Z1−→−−−− 就是与复数 z2−z1 对应的向量。如果用 d 表示点 Z1,Z1 之间的距离,那么 d 就是向量 Z1Z2−→−−−− 的模,即复数 z2−z1 的模,所以
\]这与我们之前导出的两点间的距离公式一致。
例3:根据复数的几何意义及向量表示,求复平面内的圆的方程。
解:如图8,设圆心为 P ,点 P 与复数 p=a+bi 对应,圆的半径为 r ,圆上任意一点 Z 与复数 z=a+bi 对应,那么
请读者利用复数的减法法则,把圆的方程 |z−p|=r 化成用实数表示的一般形式
2.2 复数的乘法与除法
复数的乘法规定按照以下的法则进行:设 z1=a+bi,z2=c+di 是任意两个复数,那么它们的积
很显然,两个复数的积仍然是一个复数。
容易验证,复数的乘法满足交换律、结合律以及乘法对加法的分配律,即对任何 z1,z2,z3∈C ,有
例1:计算 (1−2i)(3+4i)(−2+i) 。
解: (1−2i)(3+4i)(−2+i)=(11−2i)(−2+i)=−20+15i 。
计算复数的乘方,要用到虚数单位 i 的乘方。因为复数的长发满足交换律与结合律,所以实数集 R 中正整数指数幂的运算律,在复数集 C 中仍然成立,即对任何 z,z1,z2∈C 及 m,n∈N ,有
例2:计算 (12−3√2i)3 。
解: (12−3√2i)3=(12)3−3(12)2(3√2i)+3(12)(3√2i)2−(3√2)3=18−33√8i−98+33√8i=−1.
复数的除法规定是乘法的逆运算,即把满足
我们知道,两个共轭复数的积是一个实数,因此,两个复数相除,可以先把它们的商写成分式的形式,然后把分子与分母都乘以分母的共轭复数,并且把结果化简,即
例3:计算 (1+2i)÷(3−4i) 。
解: (1+2i)÷(3−4i)=1+2i3−4i=(1+2i)(3+4i)(3−4i)(3+4i)=−5+10i25=−15+12i 。
三、复数的三角形式
3.1 复数的三角形式
我们知道,与复数 z=a+bi 对应的向量 OZ−→−− (图9)的模 r 叫做这个复数的模,并且
以 x 轴的正半轴为始边、向量 OZ−→−− 所在的射线(起点是 O )为终边的角 θ ,叫做复数 z=a+bi 的辐角。
不等于零的复数 z=a+bi 的辐角有无限多个值,这些值相差 2π 的整数倍。例如,复数 i 的辐角是 π2+2kπ ,其中 k 可以取任何整数。
适合于 0≤θ<2π 的辐角 θ 的值,叫做辐角的主值。记作 argz ,即 0≤argz<2π 。
每一个不等于零的复数有唯一的模与辐角的主值,并且可由它的模与辐角的主值唯一确定。因此,两个非零复数相等当且仅当它们的模与辐角的主值分别相等。
很明显,当 a∈R+ 时,
如果 z=0 ,那么与它对应的向量 OZ−→−− 缩成一个点(零向量),这样的向量的方向是任意的,所以复数 0 的辐角也是任意的。
从图9可以看出:
因此我们可以说,任何一个复数 z=a+bi 都可以表示成
r(cosθ+isinθ) 叫做复数 a+bi 的三角形式。为了同三角形式区别开来, a+bi 叫做复数的代数形式。
例1:把复数 3√+i 表示成三角形式。
解: r=3+1−−−−√=2,cosθ=3√2. 因为与 3√+i 对应的点在第一象限,所以 arg(3√+i)=π6 ,于是 3√+i=2(cosπ6+isinπ6).
例2:把复数 1−i 表示成三角形式。
解: r=1+1−−−−√=2√,cosθ=12√=2√2. 因为与 1−i 对应的点在第四象限,所以 arg(1−i)=7π4 ,于是 1−i=2√(cos7π4+isin7π4).
例3:把复数 −1 表示成三角形式。
解: r=1+0−−−−√=1. 因为与 −1 对应的点在 x 轴的负半轴上,所以 arg(−1)=π ,于是 −1=cosπ+isinπ.
当然,把一个复数表示成三角形式时,辐角 θ 不一定要取主值。例如, 2√[cos(−π4)+isin(−π4)] 也是复数 1−i 的三角形式。
3.2 复数的三角形式的运算
3.2.1 乘法与乘方
如果把复数 z1,z2 分别写成三角形式
这就是说,两个复数相乘,积的模等于各复数的模的积,积的辐角等于各复数的辐角之和。
据此,两个复数 z1,z2 相乘时,可以先画出分别与 z1,z2 对应的向量 OP1−→−−−,OP2−→−−− ,然后把向量 OP1−→−−− 按逆时针方向旋转一个角度 θ2 (如果 θ<0 ,就要把 OP1−→−−− 按顺时针方向旋转一个角度 |θ2| ),在把它的模变为原来的 r2 倍,所得的向量 OP−→−− ,就表示积 z1⋅z2 (图10)。这就是复数乘法的几何意义。
用数学归纳法容易证明(读者自己证明),上面的结论可以推广到 n 个复苏相乘的情况,就是:
[2]棣莫佛(Abrabam de Moivre, 1667-1754年),法国数学家。
例1:计算 2√(cosπ12+isinπ12)⋅3√(cosπ6+isinπ6) 。
解: 2√(cosπ12+isinπ12)⋅3√(cosπ6+isinπ6)=6√[cos(π12+π6)+isin(π12+π6)]=6√(cosπ4+isinπ4)=6√(2√2+2√2i)=3√+3√i 。
例2:计算 (3√−i)6 。
解:因为 3√−i=2(cos11π6+isin11π6) ,所以 (3√−i)6=[2(cos11π6+isin11π6)]6=26(cos11π+isin11π)=64(cosπ+isinπ)=64⋅(−1)=−64 。
例3:如图11,向量 OZ−→−− 与复数 −1+i 对应,把 OZ−→−− 按逆时针方向旋转 120∘ ,得到 OZ‘−→−− 。求与向量 OZ′−→−−− 对应的复数(用代数形式表示)。
解:所求的复数就是 −1+i 乘以一个复数 z0 的积,这个复数 z0 的模是 1 ,辐角的主值是 120∘ 。
所以所求的复数是 (−1+i)⋅1(cos120∘+isin120∘)=(−1+i)(−12+3√2i)=1−3√2−1+3√2i
例4:如图12,已知平面内并列的三个相等的正方形,利用复数证明
证明:如图建立坐标系(确定复平面),由于平行线的内错角相等, ∠1,∠2,∠3 分别等于复数 1+i,2+i,3+i 的辐角的主值,这样 ∠1+∠2+∠3 就是积 (1+i)(2+i)(3+i) 的辐角,而
3.2.2 除法
设 z1=r1(cosθ1+isinθ1),z2=r2(cosθ2+isinθ2) ,且 z2≠0 。因为
例5:计算 4(cos4π3+isin4π3)÷2(cos5π6+isin5π6) 。
解: 4(cos4π3+isin4π3)÷2(cos5π6+isin5π6)=4(cos4π3+isin4π3)2(cos5π6+isin5π6)=2[cos(4π3−5π6)+isin(4π3−5π6)]=2[cosπ2+isinπ2]=2(0+i)=2i 。
3.2.3 开方
设 ρ(cosϕ+isinϕ) 是复数 r(cosθ+isinθ) 的 n(n∈N) 次方根,那么
因为相等的复数,它们的模相等,辐角可以相差 2π 的整数倍,所以
[3]采用这个符号时,一定要记住 z√n 表示 n 个复数。
例6:求 1−i 的立方根。
解:因为
例7:设 a∈R+ ,求 −a 的平方根。
解:因为 −a=a(cosπ+isinπ) ,所以 −a 的平方根是
从例7可以看到, a∈R+ 时, −a 的平方根是 ±a√i 。
我们知道,对于实系数一元二次方程 ax2+bx+c=0 ,如果 b2−4ac<0 ,那么它在实数集 R 中没有根。现在我们在复数集 C 中考察这种情况。经过变形,原方程可化为
例8:在复数集 C 中解方程 x2−4x+5=0 。
解:因为 b2−4ac=16−20=−4<0 ,所以 x=4±2i2=2±i 。
根据以前学过的一元二次方程的有关知识,我们知道,例8中方程左边的二次三项式 x2−4x+5 在复数集 C 中就可以通过求根的方法分解成两个一次因式的积,即
形如 anxn+a0=0 ( a0,an∈C ,且 an≠0 )的方程叫做二项方程。任何一个二项方程都可以化成 xn=b(b∈C) 的形式,因此,都可以通过复数开方来求根。
例9:在复数集 C 中解方程 x5=32 。
解:原方程就是
一般地,方程 xn=b(b∈C) 的根的几何意义是复平面内的 n 个点,这些点均匀分布在以原点为圆心,以 |b|−−√n 为半径的圆上。
*四、复数的指数形式
在科学技术,特别实在电工和无线电计算中,为了方便起见,还采用复数的另一种表示——复数的指数形式。
我们把模为 1 ,辐角为 θ (以弧度为单位)的复数
[4]这里的 e=2.71828⋯ ,就是自然对数的底数。这个公式叫做欧拉(Leonhard Euler,1707-1783年,瑞士数学家)公式。在“复变函数论”中可以证明这个公式。
例如,
引入记号 eiθ=cosθ+isinθ 之后,任何一个复数
根据复数的指数形式的定义,我们有
同样可证
对于开方运算,复数 reiθ 的 n(n∈N) 次方根是
例1:把复数 z=2i 表示成指数形式。
解: z=2i=2(cosπ1+isinπ2)=2eiπ2 。
例2:把 2√e−iπ4,5√ei2π3 表示成三角形式及代数形式。
解: 2√e−iπ4=2√[cos(−π4)+isinπ4]=1−i,5√ei2π3=5√[cos(−2π3)+isin2π3]=−5√2+15√2i 。
例3:用 eiθ 与 e−iθ 表示 cosθ 与 sinθ 。
解:因为