复数

一、复数的概念

1.1 数的概念的发展

数的概念是从实践中产生和发展起来的。早在原始社会末期,由于记数的需要,人们就建立起自然熟的概念。自然数的全体构成自然数集 N

随着生产和科学的发展,熟的概念也得到了发展。

为了表示各种具有相反意义的量以及满足记数法的要求,人们引进了零和负数,把自然数看作正整数,把正整数、零、负整数合并在一起,构成整数集 Z

为了解决测量、分配中遇到的将某些量进行等分的问题,人们又引进了有理数,规定他们就是一切形如 mn 的数,其中 mZ,nN 。这样,就把整数集 Z 扩大为有理数集 Q 。显然, ZQ 。如果把整数看作分母为 1 的分数,那么有理数实际上就是分数集。

每一个有理数都可以表示成整数、有限小数或循环节不为 0 的循环小数;反过来,整数、有限小数或循环节不为 0 的循环小数也都是有理数。如果把整数、有限小数都看作循环节为 0 的循环小数,那么有理数集实际上就是循环小数的集合。

为了解决有些量与量之间的比值(例如用正方形的边长去度量它的对角线所得结果)不能用有理数表示的矛盾,人们又引入了无理数。所谓无理数,就是无限不循环小数。有理数集与无理数集合并在一起,构成实数集 R 。因为有理数都可以看作循环小数(包括整数、有限小数),无理数都是无限不循环小数,所以实数集就是小数集。

从解方程来看,方程 x+5=3 在自然数集 N 中无解,在整数集 Z 中就有一个解 x=2 ;方程 3x=5 字整数集 Z 中无解,在有理数集 Q 中就有一个解 x=53 ;方程 x2=2 在有理数集 Q 中无解,在实数集 R 中就有两个解 x=±2 。但是,熟的范围扩充到实数集 R 以后,象 x2=1 这样的方程还是无解,因为没有一个实数的平方等于 1 。在十六世纪,由于解方程的需要,人们开始引进一个新数 i ,叫做虚数单位,并规定:

  • 它的平方等于 1 ,即
    i2=1;
  • 实数与它进行四则运算时,所有的加、乘运算律仍然成立。

在这种规定下, i 可以与实数 b 相乘,再同实数 a 相加,由于满足乘法交换律及加法交换律,从而可以把结果写成 a+bi 。人们把它们叫做复数。全体复数所成的集合,一般用字母 C 来表示。[1]

[1] C 是英文词组Complex numbers(复数)的第一个字母。

在这种规定下, i 就是 1 的一个平方根。因此,方程 x2=1 在复数集 C 中就至少有一个解 x=i

十八世纪以后,复数在数学、力学和电学中得到了应用。从此对它的研究日益展开。现在复数已成为科学技术中普遍使用的一种数学工具。

1.2 复数的有关概念

复数 a+bi a,bR 。以后说复数 a+bi 时,都有 a,bR ),当 b=0 时,就是实数;当 b0 时,叫做虚数,当 a=0,b0 时,叫做纯虚数 a b 分别叫做复数 a+bi 实部虚部。例如, 3+4i,122i,0.5i 都是虚数,它们的实部分别是 3,12,0 ,虚部分别是 4,2,0.5

显然,实数集 R 是复数集 C 的真子集,即 RC

如果两个复数 a+bi c+di 的实部与虚部分别相等,我们就说这两个复数相等,记作 a+bi=c+di ,这就是说,如果 a,b,c,dR ,那么

a+bi=c+dia=c,b=d,a+bi=0a=b=0.

例:已知 (2x1)+i=y(3y)i ,其中 x,yR 。求 x y

解:根据复数相等的定义,得方程组 {2x1=y,1=(3y). 解得 x=52,y=4

从复数相等的定义,我们知道,任何一个复数 z=a+bi ,都可以由一个有顺序的实数对 (a,b) 唯一确定。这就使我们能借用平面直角坐标系来表示复数 z=a+bi 。如图1,点 Z 的横坐标是 a ,纵坐标是 b ,复数 z=a+bi 可用点 Z(a,b) 来表示。这个建立了直角坐标系表示复数的平面叫做复平面 x 轴叫做实轴 y 轴除去原点的部分叫做虚轴(因为原点表示实数 0 ,原点不在虚轴上)。表示实数的点都在实轴上,表示纯虚数的点都在轴上。

复数-图1        复数-图2

 

很明显,按照这种表示方法,每一个复数,有复平面内唯一的一个点和它对应;反过来,复平面内的每一个点,有唯一的一个复数和它对应。由此可知,复数集 C 和复平面内所有的点所成的集合是一一对应的。这是复数的一个几何意义。

当两个复数实部相等,虚部互为相反数时,这两个复数叫做互为共轭复数(当虚部不等于 0 时也叫做互为共轭虚数)。复数 z 的共轭复数可以用 z¯¯¯ 来表示,也就是说,复数 z=a+bi 的共轭复数是 z¯¯¯=abi 。显然,复平面内表示两个互为共轭复数的点 Z Z¯¯¯¯ 关于实轴对称(图2),而实数 a (即虚部为 0 的复数)的共轭复数仍是 a 本身。

两个实数可以比较大小。但是两个复数,如果不全是实数,就不能比较它们的大小。对于这个命题的证明,将稍后给出。

1.3 复数的向量表示

在物理学中,我们经常遇到力、速度、加速度、电场强度等,这些量,除了要考虑它们的绝对值大小以外,还要考虑它们的方向。我们把这种既有绝对值大小又有方向的量叫做向量。向量可以用有向线段来表示,线段的长度就是这个向量的绝对值(叫做这个向量的模),线段的方向(用箭头表示)就是这个向量的方向。模相等且方向相同的向量,不管它们的起点在哪里,都认为是相等的向量。在这一规定下,向量可以根据需要进行平移。模为零的向量(它的方向是任意的)叫做零向量。规定所有零向量相等。

复数-图3

复数可以用向量来表示。如图3,设复平面内的点 Z 表示复数 z=a+bi ,连结 OZ ,如果我们把有向线段 OZ (方向是从点 O 指向点 Z )看成向量,记作 OZ ,就把复数同向量联系起来了。很明显,向量 OZ 是由点 Z 唯一确定的;反过来,点 Z 也可由向量 OZ 唯一确定。因此,复数集 C 与复平面内所有以原点 O 为起点的向量所成的集合也是一一对应的。为方便起见,我们常把复数 z=a+bi 说成点 Z 或者说成向量 OZ 。此外,我们还规定,相等的向量表示同一个复数。

图3中的向量 OZ 的模(即有向线段 OZ 的长度) r 叫做复数 z=a+bi 的模(或绝对值)记作 |z| |a+bi| 。如果 b=0 ,那么 z=a+bi 是一个实数 a 它的模就等于 |a| (即 a 在实数意义上的绝对值)。容易看出,

|z|=|a+bi|=r=a2+b2.

例1:求复数 z1=3+4i z2=122i 的模,并且比较它们的模的大小。

解: |z1|=32+42=5,|z2|=(12)2+(2)2=32. 5>32 ,故 |z1|>|z2|

例2: zC ,满足下列条件的点 Z 的集合是什么图形?
(1) |z|=4 ;(2) 2<|z|<4

解:(1)复数 z 的模等于 4 ,就是说,向量 OZ 的模(即点 Z 与原点 O 的距离)等于 4 ,所以满足条件 |z|=4 的点 Z 的集合是以原点 O 为圆心,以 4 为半径的圆。
(2)不等式 2<|z|<4 可化为不等式组 {|z|<4,|z|>2. 不等式 |z|<4 的解集是圆 |z|=4 内部所有的点组成的集合,不等式 |z|>2 的解集是圆 |z|=2 外部所有的点组成的集合,这两个集合的交集,就是上述不等式组的解集,也就是满足条件 2<|z|<4 的点 Z 的集合。容易看出,所求的集合是以原点 O 为圆心,以 2 4 为半径的圆所夹的圆环,但不包括圆环的边界(图4)。

复数-图4

 

二、复数的运算

2.1 复数的加法与减法

复数的加法规定按照以下的法则进行:设 z1=a+bi,z2=c+di 是任意两个复数,那么它们的

(a+bi)+(c+di)=(a+c)+(b+d)i.
很明显,两个复数的和仍然是一个复数。

容易验证,复数的加法满足交换律、结合律,即对任意 z1,z2,z3R ,有

z1+z2=z2+z1,(z1+z2)+z3=z1+(z2+z3).
现在我们来看复数加法的几何意义。

从物理学知道,要求出作用于同一点 O 、但不在同一直线上的两个力 F1 F2 的合力,只要用表示 F1 F2 的向量为相邻的两边画一个平行四边形,那么,平行四边形中,以力的作用点 O 为起点的那条对角线所表示的向量就是合力 F (图5-1)。这个法则通常叫做向量加法的平行四边形法则。

复数-图5-1     复数-图5-2

复数用向量来表示,如果与这些复数对应的向量不在同一直线上,那么这些复数的加法就可以按照向量加法的平行四边形法则来进行。下面我们来证明这一事实。

OZ1 OZ2 分别与复数 a+bi c+di 对应,且 OZ1,OZ2 不在同一直线上(图5-2)。以 OZ1 OZ2 为两条邻边画平行四边形 OZ1ZZ2 ,画 x 轴的垂线 PZ1,QZ2 RZ ,并且画 Z1SRZ ,容易证明

ZZ1SZ2OQ,
并且四边形 Z1PRS 是矩形,因此
OR=OP+PR=OP+Z1S=OP+OQ=a+c
RZ=RS+SZ=PZ1+QZ2=b+d.
于是点 Z 的坐标是 (a+c,b+d) ,这说明设 OZ 就是于复数 (a+c)+(b+d)i 对应的向量。

由此可知,求两个复数的和,可以先画出这两个复数对应的向量 OZ1,OZ2 ,如果 OZ1,OZ2 不在同一直线上,再以这两个向量为两条邻边画平行四边形,那么与这个平行四边的对角线 OZ 所表示的向量 OZ 对应的复数,就是所求两个复数的和。

如果 OZ1,OZ2 在同一直线上,我们可以画出一个“压扁”了的平行四边形,并据此画出它的对角线来表示 OZ1,OZ2 的和。

总之,复数的加法可以按照向量的加法法则来进行,这是复数加法的几何意义。

下面再来看复数的减法。

复数的减法规定是加法的逆运算,即把满足

(c+di)+(x+yi)=a+bi
的复数 x+yi ,叫做复数 a+bi 减去复数 c+di 。记作 (a+bi)(c+di) ,根据复数相等的定义,有
c+x=a,d+y=b,
由此
x=ac,y=bd,
所以
x+yi=(ac)+(bd)i,
(a+bi)(c+di)=(ac)+(bd)i,
这就是复数的减法法则。由此可见,两个复数的差是一个唯一确定的复数。

现设 OZ 与复数 a+bi 对应, OZ1 与复数 c+di 对应(图6)。以 OZ 为一条对角线, OZ1 为一条边画平行四边形,那么这个平行四边形的另一边, OZ2 所表示的向量, OZ2 就与复数 (ac)+(bd)i 对应。因为 Z1Z=//OZ2 ,所以向量 Z1Z 也与这个差对应。

复数-图6

 

这就是说,两个复数的差 zz1 (即 OZOZ1 )与连结两个向量终点并指向被减数的向量对应。这就是复数减法的几何意义。

由上所述,我们可以看出,复数的加(减)法与多项式的加(减)法是类似的,就是把复数的实部与实部、虚部与虚部分别相加(减),即

(a+bi)±(c+di)=(a±c)+(b±d)i.

例1:计算 (56i)+(2i)(3+4i)

解: (56i)+(2i)(3+4i)=(523)+(614)i=11i

例2:根据复数的几何意义及向量表示,求复平面内两点间的距离公式。

复数-图7

解:如图7,设复平面内的任意两点 Z1,Z2 分别表示复数 z1=x1+y1i,z2=x2+y2i ,那么 Z1Z1 就是与复数 z2z1 对应的向量。如果用 d 表示点 Z1,Z1 之间的距离,那么 d 就是向量 Z1Z2 的模,即复数 z2z1 的模,所以

d=|z2z1|=|(x2+y2i)(x1+y1i)|=|(x2x1)+(y2y1)i|=(x2x1)2+(y2y1)2.

\]这与我们之前导出的两点间的距离公式一致。

例3:根据复数的几何意义及向量表示,求复平面内的圆的方程。

复数-图8

解:如图8,设圆心为 P ,点 P 与复数 p=a+bi 对应,圆的半径为 r ,圆上任意一点 Z 与复数 z=a+bi 对应,那么

|zp|=r.
这就是复平面内的圆的方程。特别地,当点 P 在原点时,圆的方程就成了 |z|=r

请读者利用复数的减法法则,把圆的方程 |zp|=r 化成用实数表示的一般形式

(xa)2+(yb)2=r2

2.2 复数的乘法与除法

复数的乘法规定按照以下的法则进行:设 z1=a+bi,z2=c+di 是任意两个复数,那么它们的

(a+bi)(c+di)=ac+bci+cdi+bdi2=(acbd)+(bc+ad)i.
也就是说,复数的乘法与多项式的乘法是类似的,但必须在所得的结果中把 i2 换成 1 ,并且把实部和虚部分别合并。

很显然,两个复数的积仍然是一个复数。

容易验证,复数的乘法满足交换律、结合律以及乘法对加法的分配律,即对任何 z1,z2,z3C ,有

z1z2=z2z1,(z1z2)z3=z1(z2z3),z1(z2+z3)=z1z2+z1z3.
根据复数的乘法法则,对于任何复数 z=a+bi ,有
(a+bi)(abi)=a2+b2+(abab)i=a2+b2,
因此,两个共轭复数 z,z¯¯¯ 的积是一个实数,这个实数等于每一个复数的模的平方,即
zz¯¯¯=|z|2=|z¯¯¯|2.

例1:计算 (12i)(3+4i)(2+i)

解: (12i)(3+4i)(2+i)=(112i)(2+i)=20+15i

计算复数的乘方,要用到虚数单位 i 的乘方。因为复数的长发满足交换律与结合律,所以实数集 R 中正整数指数幂的运算律,在复数集 C 中仍然成立,即对任何 z,z1,z2C m,nN ,有

zmzn=zm+n,(zm)n=zmn,(z1z2)n=zn1zn1.
另一方面,我们有
i1=i,i2=1,i3=i2i=i,i4=i3i=ii=i2=1.
从而,对于任何 nN ,我们都有
i4n+1=i4ni=(i4)ni=1ni=i.
同理可证
i4n+2=1,i4n+3=i,i4n=1.
这就是说,如果 nN ,那么
i4n+1=i,i4n+2=1,i4n+3=i,i4n=1.

例2:计算 (1232i)3

解: (1232i)3=(12)33(12)2(32i)+3(12)(32i)2(32)3=18338i98+338i=1.

复数的除法规定是乘法的逆运算,即把满足

(c+di)(x+yi)=a+bi(c+di0)
的复数 x+yi ,叫做复数 a+bi 除以复数 c+di ,记作 (a+bi)÷(c+di) a+bic+di

我们知道,两个共轭复数的积是一个实数,因此,两个复数相除,可以先把它们的商写成分式的形式,然后把分子与分母都乘以分母的共轭复数,并且把结果化简,即

a+bic+di=(a+bi)(cdi)(c+di)(cdi)=(ac+bd)+(bcad)ic2+d2=ac+bdc2+d2+bcadc2+d2i(c+di0).
因为 c+di0 ,所以 c2+d20 。由此可见,商 a+bic+di 是一个唯一确定的复数。

例3:计算 (1+2i)÷(34i)

解: (1+2i)÷(34i)=1+2i34i=(1+2i)(3+4i)(34i)(3+4i)=5+10i25=15+12i

三、复数的三角形式

3.1 复数的三角形式

我们知道,与复数 z=a+bi 对应的向量 OZ (图9)的模 r 叫做这个复数的模,并且

r=a2+b2.

复数-图9

x 轴的正半轴为始边、向量 OZ 所在的射线(起点是 O )为终边的角 θ ,叫做复数 z=a+bi 的辐角

不等于零的复数 z=a+bi 的辐角有无限多个值,这些值相差 2π 的整数倍。例如,复数 i 的辐角是 π2+2kπ ,其中 k 可以取任何整数。

适合于 0θ<2π 的辐角 θ 的值,叫做辐角的主值。记作 argz ,即 0argz<2π

每一个不等于零的复数有唯一的模与辐角的主值,并且可由它的模与辐角的主值唯一确定。因此,两个非零复数相等当且仅当它们的模与辐角的主值分别相等

很明显, aR+ 时,

argα=0,arg(α)=π,arg(ai)=π2,arg(ai)=3π2.

如果 z=0 ,那么与它对应的向量 OZ 缩成一个点(零向量),这样的向量的方向是任意的,所以复数 0 的辐角也是任意的。

从图9可以看出:

{a=rcosθ,b=rsinθ.
因此
a+bi=rcosθ+irsinθ=r(cosθ+isinθ).
其中
r=a2+b2,cosθ=ar,sinθ=br.
当与 z 对应的点 Z 不在实轴或虚轴上时, z 的辐角 θ 的终边所在的象限就是点 Z 所在的象限;当点 Z 在实轴或虚轴上时,辐角 θ 的终边就是从原点 O 出发、经过点 Z 的板条坐标轴。

因此我们可以说,任何一个复数 z=a+bi 都可以表示成

r(cosθ+isinθ)
的形式。

r(cosθ+isinθ) 叫做复数 a+bi 三角形式。为了同三角形式区别开来, a+bi 叫做复数的代数形式

例1:把复数 3+i 表示成三角形式。

解: r=3+1=2,cosθ=32. 因为与 3+i 对应的点在第一象限,所以 arg(3+i)=π6 ,于是 3+i=2(cosπ6+isinπ6).

例2:把复数 1i 表示成三角形式。

解: r=1+1=2,cosθ=12=22. 因为与 1i 对应的点在第四象限,所以 arg(1i)=7π4 ,于是 1i=2(cos7π4+isin7π4).

例3:把复数 1 表示成三角形式。

解: r=1+0=1. 因为与 1 对应的点在 x 轴的负半轴上,所以 arg(1)=π ,于是 1=cosπ+isinπ.

当然,把一个复数表示成三角形式时,辐角 θ 不一定要取主值。例如, 2[cos(π4)+isin(π4)] 也是复数 1i 的三角形式。

3.2 复数的三角形式的运算

3.2.1 乘法与乘方

如果把复数 z1,z2 分别写成三角形式

z1=r1(cosθ1+isinθ1),z2=r2(cosθ2+isinθ2),
故有
z1z2=r1(cosθ1+isinθ1)r2(cosθ2+isinθ2)=r1r2[(cosθ1cosθ2sinθ1sinθ2)+i(sinθ1cosθ2+cosθ1sinθ2)]=r1r2[cos(θ1+θ2)+isin(θ1+θ2)],
r1(cosθ1+isinθ1)r2(cosθ2+isinθ2)=r1r2[cos(θ1+θ2)+isin(θ1+θ2)].

这就是说,两个复数相乘,积的模等于各复数的模的积,积的辐角等于各复数的辐角之和

据此,两个复数 z1,z2 相乘时,可以先画出分别与 z1,z2 对应的向量 OP1,OP2 ,然后把向量 OP1 按逆时针方向旋转一个角度 θ2 (如果 θ<0 ,就要把 OP1 按顺时针方向旋转一个角度 |θ2| ),在把它的模变为原来的 r2 倍,所得的向量 OP ,就表示积 z1z2 (图10)。这就是复数乘法的几何意义。

复数-图10

用数学归纳法容易证明(读者自己证明),上面的结论可以推广到 n 个复苏相乘的情况,就是:

z1z2zn=r1(cosθ1+isinθ1)r2(cosθ2+isinθ2)rn(cosθn+isinθn)=r1r2rn[cos(θ1+θ2++θn)+isin(θ1+θ2++θn)].
因此,如果
r1=r2==rn=r,θ1=θ2==θn=θ
时,就有
[r(cosθ+isinθ)n]=rn(cosnθ+isinnθ)(nN).
这就是说, 复数的 n(nN) 次幂的模等于这个复数的模的 n 次幂,它的辐角等于这个复数的辐角的 n 。这个定理叫做 棣莫佛 [2] 定理

[2]棣莫佛(Abrabam de Moivre, 1667-1754年),法国数学家。

例1:计算 2(cosπ12+isinπ12)3(cosπ6+isinπ6)

解: 2(cosπ12+isinπ12)3(cosπ6+isinπ6)=6[cos(π12+π6)+isin(π12+π6)]=6(cosπ4+isinπ4)=6(22+22i)=3+3i

例2:计算 (3i)6

解:因为 3i=2(cos11π6+isin11π6) ,所以 (3i)6=[2(cos11π6+isin11π6)]6=26(cos11π+isin11π)=64(cosπ+isinπ)=64(1)=64

例3:如图11,向量 OZ 与复数 1+i 对应,把 OZ 按逆时针方向旋转 120 ,得到 OZ 。求与向量 OZ 对应的复数(用代数形式表示)。

复数-图11

解:所求的复数就是 1+i 乘以一个复数 z0 的积,这个复数 z0 的模是 1 ,辐角的主值是 120

所以所求的复数是 (1+i)1(cos120+isin120)=(1+i)(12+32i)=1321+32i

例4:如图12,已知平面内并列的三个相等的正方形,利用复数证明

1+2+3=π2.

复数-图12

证明:如图建立坐标系(确定复平面),由于平行线的内错角相等, 1,2,3 分别等于复数 1+i,2+i,3+i 的辐角的主值,这样 1+2+3 就是积 (1+i)(2+i)(3+i) 的辐角,而

(1+i)(2+i)(3+i)=10i,
其辐角的主值是 π2 ,并且 1,2,3 都是锐角,于是
0<1+2+3<3π2,
所以
1+2+3=π2.

3.2.2 除法

z1=r1(cosθ1+isinθ1),z2=r2(cosθ2+isinθ2) ,且 z20 。因为

r2(cosθ2+isinθ2)r1r2[cos(θ1θ2)+isin(θ