SVM的复杂度

大Tips:SVM的计算复杂度  

使用SVM进行分类的时候,实际上是训练和分类两个完全不同的过程,因而讨论复杂度就不能一概而论,我们这里所说的主要是训练阶段的复杂度,即解那个二次规划问题的复杂度。对这个问题的解,基本上要划分为两大块,解析解和数值解。 

解析解就是理论上的解,它的形式是表达式,因此它是精确的,一个问题只要有解(无解的问题还跟着掺和什么呀,哈哈),那它的解析解是一定存在的。当然存在是一回事,能够解出来,或者可以在可以承受的时间范围内解出来,就是另一回事了。对SVM来说,求得解析解的时间复杂度最坏可以达到O(Nsv3),其中Nsv是支持向量的个数,而虽然没有固定的比例,但支持向量的个数多少也和训练集的大小有关。 

数值解就是可以使用的解,是一个一个的数,往往都是近似解。求数值解的过程非常像穷举法,从一个数开始,试一试它当解效果怎样,不满足一定条件(叫做停机条件,就是满足这个以后就认为解足够精确了,不需要继续算下去了)就试下一个,当然下一个数不是乱选的,也有一定章法可循。有的算法,每次只尝试一个数,有的就尝试多个,而且找下一个数字(或下一组数)的方法也各不相同,停机条件也各不相同,最终得到的解精度也各不相同,可见对求数值解的复杂度的讨论不能脱开具体的算法。 

一个具体的算法,Bunch-Kaufman训练算法,典型的时间复杂度在O(Nsv3+LNsv2+dLNsv)和O(dL2)之间,其中Nsv是支持向量的个数,L是训练集样本的个数,d是每个样本的维数(原始的维数,没有经过向高维空间映射之前的维数)。复杂度会有变化,是因为它不光跟输入问题的规模有关(不光和样本的数量,维数有关),也和问题最终的解有关(即支持向量有关),如果支持向量比较少,过程会快很多,如果支持向量很多,接近于样本的数量,就会产生O(dL2)这个十分糟糕的结果(给10,000个样本,每个样本1000维,基本就不用算了,算不出来,呵呵,而这种输入规模对文本分类来说太正常了)。 

这样再回头看就会明白为什么一对一方法尽管要训练的两类分类器数量多,但总时间实际上比一对其余方法要少了,因为一对其余方法每次训练都考虑了所有样本(只是每次把不同的部分划分为正类或者负类而已 ),自然慢上很多。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值