本来一开始的想法是把m==1和m==2的情况分开讨论,也是能做的,现在一想。。。。
又是一个dp套路定义f[i][j][k]表示第一段扫到i第二段扫到j一共分为k个矩阵的方案数,然后就可以转移了,就想学长说的,想出dp定义,dp题就做完一半了
#include<cstdio>
#include<cstring>
#include<iostream>
#define Rep(i,a,b) for(int i=a;i<=b;i++)
#define rRep(i,a,b) for(int i=a;i>=b;i--)
#define cmax(a,b) (a=max(a,b))
using namespace std;
int f[105][105][12],n,m,K,sum1[105],sum2[105],sum[105],mat[105][5];
int main(){
scanf("%d%d%d",&n,&m,&K);
for(int i=1;i<=n;i++){
sum[i]=sum[i-1];
for(int j=1;j<=m;j++){
scanf("%d",&mat[i][j]);
if(j==1)sum1[i]=sum1[i-1]+mat[i][j];
else if(j==2)sum2[i]=sum2[i-1]+mat[i][j];
sum[i]+=mat[i][j];
}
}
Rep(i,1,n)Rep(j,1,n){
Rep(k,1,K){
f[i][j][k]=max(f[i-1][j][k],f[i][j-1][k]);
rRep(t,i-1,0)cmax(f[i][j][k],f[t][j][k-1]+sum1[i]-sum1[t]);
rRep(t,j-1,0)cmax(f[i][j][k],f[i][t][k-1]+sum2[j]-sum2[t]);
int x=min(i,j);
rRep(t,x-1,0)cmax(f[i][j][k],f[t][t][k-1]+sum[x]-sum[t]);
}
}
printf("%d",f[n][n][K]);
return 0;
}