【BZOJ 1084】最大子矩阵

47 篇文章 0 订阅
9 篇文章 0 订阅

本来一开始的想法是把m==1和m==2的情况分开讨论,也是能做的,现在一想。。。。

又是一个dp套路定义f[i][j][k]表示第一段扫到i第二段扫到j一共分为k个矩阵的方案数,然后就可以转移了,就想学长说的,想出dp定义,dp题就做完一半了

#include<cstdio>
#include<cstring>
#include<iostream>
#define Rep(i,a,b) for(int i=a;i<=b;i++)
#define rRep(i,a,b) for(int i=a;i>=b;i--)
#define cmax(a,b) (a=max(a,b))
using namespace std;
int f[105][105][12],n,m,K,sum1[105],sum2[105],sum[105],mat[105][5];

int main(){
	scanf("%d%d%d",&n,&m,&K);
	for(int i=1;i<=n;i++){
		sum[i]=sum[i-1];
		for(int j=1;j<=m;j++){
			scanf("%d",&mat[i][j]);
			if(j==1)sum1[i]=sum1[i-1]+mat[i][j];
			else if(j==2)sum2[i]=sum2[i-1]+mat[i][j];
			sum[i]+=mat[i][j];
		}
	}
	
	Rep(i,1,n)Rep(j,1,n){
		Rep(k,1,K){
			f[i][j][k]=max(f[i-1][j][k],f[i][j-1][k]);
			rRep(t,i-1,0)cmax(f[i][j][k],f[t][j][k-1]+sum1[i]-sum1[t]);
			rRep(t,j-1,0)cmax(f[i][j][k],f[i][t][k-1]+sum2[j]-sum2[t]);
			int x=min(i,j);
			rRep(t,x-1,0)cmax(f[i][j][k],f[t][t][k-1]+sum[x]-sum[t]);
		}
	}
	
	printf("%d",f[n][n][K]);
	return 0;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值