【BZOJ 1014】 [ZJOI2008]骑士 树形dp

236 篇文章 0 订阅
47 篇文章 0 订阅
n个点n条边,虽然不是一个树但还是很接近了,想象一下如果只有n-1条边的情况那么就可以直接套最大独立子集了,so easy。但是这一道题居然环,先别怕,因为只是多了一条边所以即使构成环那么最多只有一个环,只需要找出来,断掉一条边就是一个树了,然后以这条边两边的节点为根做最大独立子集,规定两个节点均不可选情况下的最大值,最后,注意题目中的可能是一个森林
#include<cstdio>
#include<cstring>
#include<iostream>
#define maxn 1000020
#define LL long long
using namespace std;
LL n,head[maxn],tot,s,t,val[maxn],f[maxn][2],vis[maxn],edg;
LL ans;
void read(LL& x){
	char c=getchar();x=0; LL flag=1;
	for(;c>'9'||c<'0';c=getchar())if(c=='-')flag=-1;
	for(;c>='0'&&c<='9';c=getchar())x=x*10+c-'0';
	x*=flag;
}
struct edge{LL next,v;}e[maxn*2];
void adde(LL a,LL b){
	e[tot].v=b,e[tot].next=head[a];head[a]=tot++;
}
void dfs1(LL u,LL fa){
	vis[u]=1;
	for(LL v,i=head[u];i!=-1;i=e[i].next ){
		v=e[i].v;if(v==fa)continue;
		if(vis[v])s=v,t=u,edg=i;
		else dfs1(v,u);
	}		 
}			 
void dfs2(LL u,LL fa){
	f[u][0]=0,f[u][1]=val[u];
	for(LL v,i=head[u];i!=-1;i=e[i].next){
		v=e[i].v;if(v==fa||i==edg||(i^1)==edg)continue;
		dfs2(v,u);
		f[u][0]+=max(f[v][0],f[v][1]);
		f[u][1]+=f[v][0];
	}
}

int main(){
	read(n);
	memset(head,-1,sizeof(head));
	for(LL a,i=1;i<=n;i++){
		read(val[i]),read(a);
		adde(i,a),adde(a,i);
	}
	LL x;
	for(LL i=1;i<=n;i++){
		if(!vis[i]){
			dfs1(i,i);dfs2(s,s);
			x=f[s][0];
			dfs2(t,t);
			ans+=max(x,f[t][0]);
		}
	}
	printf("%lld",ans);
	return 0;
}


  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值