【BZOJ 3672】[Noi2014]购票 树分治+斜率优化

好了,回来填这个坑,闲来无事就尽力说清楚一些吧,code较难的部分我加了注释。

首先让我们考虑如果题目要求的不是一个树形结构,而是线性的我们怎么来处理。(其实就变成了一道水水的斜率优化dp),至少这个方程还是很好化简的,假设k<j而且f[k]比f[j]更优,满足(f[k]-f[j])/(dis[k]-dis[j])>p[i]的斜率方程式,但是我们会吃惊的发现,不等式左边x是单调的,但是不等式的右边斜率并不单调(p值给定,p[k]可以比p[j]大,也可以小),也就是说,在维护单调队列的时候,我们当然希望不等式左边越大越好,但是当前满足的斜率后面不一定满足,这里有点抽象,实际就是单调队列的右指针可以++或者--但是左指针却不能向右移动,还是一个半凸包,然后每次找最优的转移的时候,二分斜率找到最后一个斜率大于p[i]的点用它来转移。(其实即使一边不单调还是很水啦,重要的是接下来的怎么套树分治)。

首先需要明确的是,一棵树其实就是很多的链组成的对吧,也就是说,可以先思考暴力怎么求,把树的根节点到每一个叶子节点都当成一个线性的链状结构,分别求解,然后会发现其实有很多部分都是重复了的,例如i节点个j节点的公共祖先到根节点之间的链其实对他们的影响都是一样的,却被重复计算了。所以树分治的思想就出来了,在处理一颗子树的时候,我先找到它的重心,然后用重心到根节点之间的影响去更新它的子树的答案。那好,又怎么来获得这个重心到根节点之间的答案呢,一个想法就是直接暴力算,但是既然是树分治,还有想法就是把这个节点和根继续分治求解,然后再倒回来求其他子树的解,所以就是:

1.处理当前子树

2.找当前子树的重心

3.一起分治重心和根节点

3.得到根节点到子树重心之间链的答案

4.用这个答案来更新重心其他子树的ans

5.继续分治重心的其他子树

注意,一定要分清楚重心和根节点的区别。总之这道题让我对树分治和斜率优化dp都有了一个更深的理解,就作为一道例题把。


    #include<cstdio>  
    #include<cstring>  
    #include<iostream>  
    #include<algorithm>  
    #define maxn 200020*2  
    #define LL long long  
    using namespace std;  
    int n,fa[maxn],q[maxn*2],sta[maxn*2],size,head[maxn],ff[maxn],cnt,tot,sum[maxn],rt,vis[maxn];  
    LL f[maxn],p_v[maxn],q_v[maxn],l_v[maxn],dis[maxn];  
    double slp[maxn*2];  
    struct edge{int v,next;LL w;}e[maxn*2];  
    void adde(int a,int b,LL c){e[tot].v=b,e[tot].w=c,e[tot].next=head[a];head[a]=tot++;}  
    bool cmp(const int& a,const int& b){return dis[a]-l_v[a]>dis[b]-l_v[b];}  
      
    void getrt(int u){  
        ff[u]=0,sum[u]=1;  
        for(int v,i=head[u];i!=-1;i=e[i].next){  
            if(vis[v=e[i].v])continue;  
            getrt(v);  
            sum[u]+=sum[v];  
            ff[u]=max(ff[u],sum[v]);  
        }  
        ff[u]=max(ff[u],size-ff[u]);  
        if(ff[u]<ff[rt])rt=u;  
    }  
      
    double getk(int a,int b){return (double)(f[a]-f[b])/(dis[a]-dis[b]);}  
    void dfs(int u){  
        sta[++cnt]=u;  
        for(int v,i=head[u];i!=-1;i=e[i].next){  
            if(vis[v=e[i].v])continue;  
            dfs(v);  
        }  
    }  
    void query(int x,int l,int r){//二分斜率   
        while(l<r){  
            int mid=l+r>>1;  
            if(slp[mid]>=p_v[x])l=mid+1;  
            else r=mid;  
        }  
        f[x]=min(f[x],f[q[l]]+(dis[x]-dis[q[l]])*p_v[x]+q_v[x]);  
    }  
      
    void solve(int u){  
        ff[rt=0]=1e9;  
        getrt(u);  
        int x=rt;vis[x]=1;//找到当前节点为根的子树的重心,并且处理这个重心  
        if(x!=u){//不重合,说明需要处理这个重心到根节点这条链之间的祖先的关系   
            size=sum[u]-sum[x];//处理这一条链以及链上的一些其他的奇奇怪怪的子树   
      
            solve(u);//继续处理这棵树,但是此时的子树是已经不包含x了的其余的子树   
            cnt=0;dfs(x);//此时我们得到了重心和根节点之间的链的关系,所以用这条链来更新重心的其他子树的dp值   
            sort(sta+1,sta+1+cnt,cmp);//按能够到达节点的深度从大到小排序   
              
            int i=1,y=fa[x],r=1;q[1]=y;  
            while(i<=cnt&&dis[sta[i]]-l_v[sta[i]]>dis[y])i++;  
              
            for(;i<=cnt;i++){//深度减上去   
                while(y!=u&&dis[sta[i]]-dis[fa[y]]<=l_v[sta[i]]){//还能够向上走   
                    y=fa[y];  
                    while(r>1&&getk(q[r-1],q[r])<=getk(q[r],y))r--;//加入一个新的元素,剔除不会更优的元素   
                    slp[r]=getk(q[r],y),q[++r]=y;  
                }  
                query(sta[i],1,r);//跟新这个节点的dp值    
            }  
        }else cnt=0,dfs(x);//重心和根节点之间没有链了   
        for(int i=1;i<=cnt;i++)if(dis[sta[i]]-dis[x]<=l_v[sta[i]])  
            f[sta[i]]=min(f[sta[i]],f[x]+(dis[sta[i]]-dis[x])*p_v[sta[i]]+q_v[sta[i]]);  
        for(int i=head[x];i!=-1;i=e[i].next){  
            if(vis[e[i].v])continue;  
            size=sum[e[i].v];solve(e[i].v);  
        }  
    }  
      
    int main(){  
        memset(head,-1,sizeof(head));int t;  
        scanf("%d%d",&n,&t);LL x;  
        for(int i=2;i<=n;i++){  
            scanf("%d%lld%lld%lld%lld",fa+i,&x,p_v+i,q_v+i,l_v+i);  
            adde(fa[i],i,x);  
            dis[i]=dis[fa[i]]+x;  
        }  
        memset(f,0x3f,sizeof(f));f[1]=0;  
        size=n;  
        solve(1);  
        for(int i=2;i<=n;i++)printf("%lld\n",f[i]);  
        return 0;  
    }  


### 回答1: bzoj[1597][usaco2008 mar]土地购买 斜率优化 这道题是一道经典的斜率优化题目,需要用到单调队列的思想。 首先,我们可以将题目中的式子进行变形,得到: f[i] = f[j] + (sum[i] - sum[j] - m) ^ 2 + k 其中,sum[i] 表示前缀和,m 和 k 都是常数。 我们可以将式子中的 sum[i] 和 k 看作常数,那么我们需要优化的就是 (sum[i] - sum[j] - m) ^ 2 这一项。 我们可以将其展开,得到: (sum[i] - sum[j] - m) ^ 2 = sum[i] ^ 2 - 2 * sum[i] * (sum[j] + m) + (sum[j] + m) ^ 2 我们可以将其看作一个二次函数,其中 a = 1,b = -2 * (sum[j] + m),c = (sum[j] + m) ^ 2。 我们可以发现,当 j < k 时,如果 f[j] + a * sum[j] + b * sum[j] <= f[k] + a * sum[k] + b * sum[k],那么 j 就不可能是最优决策点,因为 k 比 j 更优。 因此,我们可以用单调队列来维护决策点。具体来说,我们可以维护一个单调递增的队列 q,其中 q[i] 表示第 i 个决策点的下标。每次加入一个新的决策点 i 时,我们可以将队列尾部的决策点 j 弹出,直到队列为空或者 f[j] + a * sum[j] + b * sum[j] <= f[i] + a * sum[i] + b * sum[i]。然后,我们将 i 加入队列尾部。 最后,队列头部的决策点就是最优决策点。我们可以用类似于双指针的方法来维护队列头部的决策点是否在当前区间内,如果不在,就弹出队列头部。 时间复杂度为 O(n)。 ### 回答2: 这道题目属于斜率优化的经典题目,难度较高,需要掌握一定的数学知识。 首先,我们可以将题目中的“最大利润”转化为“最小成本”,这样问题就变成了找到一个方案,使得购买土地的成本最小。 接着,我们考虑如何用斜率优化来解决这个问题。我们可以定义一个函数f(i),表示前i块土地的最小成本。 显然,f(1)=0,因为不需要购买任何土地。 对于f(i),它可以由f(j)+b(i)×a(j+1)得到,其中j<i,a(j+1)表示第j+1块土地的面积,b(i)表示第i块土地的价格。这个式子的含义是,我们现在要购买第i块土地,那么前面的土地(即前j块)就都要买,所以f(j)表示前j块土地的最小成本,b(i)×a(j+1)表示购买第i块土地的成本。 那么,我们可以得到递推公式: f(i)=min{f(j)+b(i)×a(j+1)},其中j<i。 这个公式看起来很简单,但是要注意的是,当b(i)×a(j+1)的斜率相同时,我们需要取其中面积较小的土地,因为它的价格更低。因此,我们需要对斜率进行排序,并在递推中用单调队列维护斜率相等的情况下面积最小的土地。 最终,f(n)就是题目所求的最小成本。 总之,这道题目需要深入理解斜率优化算法的原理和实现方式,并且需要注意细节处理,如果能够顺利地解决这个问题,那么对于斜率优化算法的掌握程度就有了很大的提升。 ### 回答3: 土地购买问题可以采用斜率优化算法来解决。这个问题可以转化为一个单调队列的问题。 首先,我们需要对土地价格按照边长从小到大排序。然后,对于每块土地,我们需要求出它的贡献。设 $f_i$ 表示前 $i$ 块土地连续的最小代价。 设当前处理到第 $i$ 块土地,已经求出了前 $j$ 块土地的最小代价 $f_j$。那么我们可以得到下面这个式子: $$ f_i=\min\limits_{j=1}^{i-1}\{f_j+(S_i-S_j)^2+P\} $$ 式子中,$S_i$ 表示前 $i$ 块土地的边长和,$P$ 表示额外购买土地的代价。首先,不考虑额外购买土地,我们可以使用动态规划来求出 $f_i$。但是,考虑到额外购买土地的代价 $P$ 是一个固定值,我们可以考虑将它与某一块土地的代价合并起来,这样就可以使用斜率优化技术来优化动态规划算法。 我们定义一个决策点 $j$,表示我们当前要处理第 $i$ 块土地时,已经处理过 $j$ 块土地,并将第 $j+1$ 块土地到第 $i$ 块土地购买,所需的最小代价。我们假设 $S_i>S_j$,则可以得到下面这个式子: $$ f_i=\min\limits_{j=1}^{i-1}\{f_j+(S_i-S_j)^2+P\} $$ 将它整理成斜率截距式可以得到: $$ y=kx+b $$ 其中 $k=(S_j)^2-2S_iS_j$,$b=f_j+(S_i)^2+P-S_j^2$,$x=S_j$,$y=f_j+(S_j-S_i)^2-S_j^2$。我们发现 $k$ 是一个单调递减的函数,因此我们可以使用一个单调队列来维护所有可能成为决策点的点。对于每个点,我们计算函数 $y$ 的值并将它们加入队列,然后取队头元素的值作为 $f_i$。 综上所述,我们可以使用斜率优化技术来解决土地购买问题,时间复杂度为 $O(n)$。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值