被秀逗了。。。。
考虑不能都成三角形的情况,就是类似于斐波拉契数列,而在int内的只有46个所以每一次先特判,如果大于46直接输出Y否则无脑暴力莽一波。
其实一开始还是想到了去找不能组成三角形的情况,但是至于斐波拉契。。。我擦,完全没想到
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define maxn 100021
#define LL long long
using namespace std;
int head[maxn],tot=1,h[maxn],n,q[55],cnt,val[maxn],fa[maxn],Q,f[maxn][21];
struct edge{int v,next;}e[maxn];
void adde(int a,int b){e[tot].v=b,e[tot].next=head[a];head[a]=tot++;}
void dfs(int u){
h[u]=h[fa[u]]+1,f[u][0]=fa[u];
for(int i=1;i<=17;i++)f[u][i]=f[f[u][i-1]][i-1];
for(int i=head[u];i;i=e[i].next){
dfs(e[i].v);
}
}
int lca(int a,int b){
if(h[a]>h[b])swap(a,b);
for(int i=17;i>=0;i--)if(h[f[b][i]]>=h[a])b=f[b][i];
if(a==b)return a;
for(int i=17;i>=0;i--){
if(f[a][i]==f[b][i])continue;
a=f[a][i],b=f[b][i];
}return f[a][0];
}
void solve(){
sort(q+1,q+1+cnt);
for(int i=3;i<=cnt;i++){
if((LL)q[i]<(LL)q[i-1]+q[i-2]){puts("Y");return;}
}puts("N");
}
int main(){
scanf("%d%d",&n,&Q);
for(int i=1;i<=n;i++)scanf("%d",val+i);
for(int a,b,i=1;i<n;i++){
scanf("%d%d",&a,&b);
fa[b]=a;adde(a,b);
}dfs(1);int pos,a,b;
while(Q--){
scanf("%d%d%d",&pos,&a,&b);
if(pos==1)val[a]=b;
else{
int g=lca(a,b);
if(h[a]+h[b]-h[g]*2+1>46)puts("Y");
else{
cnt=0;
while(a!=g){q[++cnt]=val[a];a=fa[a];}
while(b!=g){q[++cnt]=val[b];b=fa[b];}
q[++cnt]=val[g];
solve();
}
}
}
return 0;
}