【BZOJ 2502】清理雪道 有下界网络流

236 篇文章 0 订阅
17 篇文章 0 订阅

有下界的最小流,刘汝佳的大白上其实讲的已经很清楚了

先按照可行流的建图方法建图以后跑一遍,但是由于只是满足了可行并没有满足最小的要求所以我们再删除超级源和超级汇以及t->s的连边以后再倒着从t跑一遍退流即可。

#include<cstdio>
#include<cstring>
#include<iostream>
#define LL long long
#define maxn 100021
#define inf 0x3fffffff
using namespace std;
int n,tot=1,head[maxn],s,t,S,T,ans;
int q[maxn],h[maxn],last[maxn],ind[maxn];
struct edge{int v,next,w;}e[maxn];
void adde(int a,int b,int c){
	e[++tot].v=b;e[tot].next=head[a],e[tot].w=c;
	head[a]=tot;
	e[++tot].v=a;e[tot].next=head[b],e[tot].w=0;
	head[b]=tot;
} 
bool bfs(){
	int l=0,r=1;
	for(int i=0;i<=T;i++)h[i]=-1;
	h[S]=0,q[0]=S;
	while(l<r){
		int u=q[l++];
		for(int v,i=head[u];i;i=e[i].next){
			if(h[v=e[i].v]==-1&&e[i].w){
				h[v]=h[u]+1;
				q[r++]=v;
			}
		}
	}return h[T]!=-1;
}
int dfs(int u,int f){
	if(!f||u==T)return f;
	int used=0,w;
	for(int v,i=last[u];i;i=e[i].next){
		if(h[v=e[i].v]==h[u]+1&&e[i].w){
			last[u]=i;
			w=min(e[i].w,f-used);
			w=dfs(v,w);
			used+=w;e[i].w-=w,e[i^1].w+=w;
			if(used==f)return f;
		}
	}
	if(!used)h[u]=-1;
	return used;
}
int dinic(){
	int ans=0;
	while(bfs()){
		for(int i=0;i<=T;i++)last[i]=head[i];
		ans+=dfs(S,inf);
	}return ans;
}
void rebuild(){
	head[s]=e[head[s]].next;
	head[t]=e[head[t]].next;
	for(int i=head[S];i;i=e[i].next)
		e[i].w=e[i^1].w=0;
	for(int i=head[T];i;i=e[i].next)
		e[i].w=e[i^1].w=0;
	adde(S,t,inf);
	adde(s,T,inf);
}
int main(){
	int ans;
	scanf("%d",&n);
	s=n+1,t=n+2,S=n+3,T=n+4;
	for(int cc,x,i=1;i<=n;i++){
		scanf("%d",&cc);
		for(int j=1;j<=cc;j++){
			scanf("%d",&x);
			adde(i,x,inf);
			ind[x]++,ind[i]--;
		}
	}
	for(int i=1;i<=n;i++){
		adde(s,i,inf),adde(i,t,inf);
		if(ind[i]>0)adde(S,i,ind[i]);
		else adde(i,T,-ind[i]);
	}
	adde(t,s,inf);
	dinic();
	ans=e[tot].w;
	rebuild();
	ans-=dinic();
	printf("%d",ans);
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值