昇思25天学习打卡营第3天|MindSpore快速入门-模型训练

基于MNIST_Data.zip手写数据集案例,进行MindSpore模型训练。

MNIST数据集

MNIST数据集由美国国家标准与技术研究所(NIST)整理发布,最初的目的是实现对手写数字的自动识别。该数据集包含了来自250个不同人的手写数字图片,其中一半是高中生,另一半是美国人口普查局的工作人员。这些图像经过处理后,每张图片的尺寸为28×28像素,并且每个像素用一个灰度值表示,范围从0到255,其中0表示背景(白色),255表示前景(黑色)。整个数据集共有70,000张图像,包括60,000张训练图像和10,000张测试图像

模型训练

模型训练一般分为四个步骤:

  1. 构建数据集。
  2. 定义神经网络模型。
  3. 定义超参、损失函数及优化器。
  4. 输入数据集进行训练与评估。

构建数据集

首先从数据集 Dataset加载代码,构建数据集。

import mindspore
from mindspore import nn
from mindspore.dataset import vision, transforms
from mindspore.dataset import MnistDataset

# Download data from open datasets
from download import download

url = "https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/" \
      "notebook/datasets/MNIST_Data.zip"
path = download(url, "./", kind="zip", replace=True)


def datapipe(path, batch_size):
    image_transforms = [
        vision.Rescale(1.0 / 255.0, 0),
        vision.Normalize(mean=(0.1307,), std=(0.3081,)),
        vision.HWC2CHW()
    ]
    label_transform = transforms.TypeCast(mindspore.int32)

    dataset = MnistDataset(path)
    dataset = dataset.map(image_transforms, 'image')
    dataset = dataset.map(label_transform, 'label')
    dataset = dataset.batch(batch_size)
    return dataset

train_dataset = datapipe('MNIST_Data/train', batch_size=64)
test_dataset = datapipe('MNIST_Data/test', batch_size=64)

定义神经网络模型

网络构建中加载代码,构建一个神经网络模型。

class Network(nn.Cell):
    def __init__(self):
        super().__init__()
        self.flatten = nn.Flatten()
        self.dense_relu_sequential = nn.SequentialCell(
            nn.Dense(28*28, 512),
            nn.ReLU(),
            nn.Dense(512, 512),
            nn.ReLU(),
            nn.Dense(512, 10)
        )

    def construct(self, x):
        x = self.flatten(x)
        logits = self.dense_relu_sequential(x)
        return logits

model = Network()

定义超参、损失函数和优化器

超参

超参(Hyperparameters)是可以调整的参数,可以控制模型训练优化的过程,不同的超参数值可能会影响模型训练和收敛速度

  • 训练轮次(epoch):训练时遍历数据集的次数。

  • 批次大小(batch size):数据集进行分批读取训练,设定每个批次数据的大小。batch size过小,花费时间多,同时梯度震荡严重,不利于收敛;batch size过大,不同batch的梯度方向没有任何变化,容易陷入局部极小值,因此需要选择合适的batch size,可以有效提高模型精度、全局收敛。

  • 学习率(learning rate):如果学习率偏小,会导致收敛的速度变慢,如果学习率偏大,则可能会导致训练不收敛等不可预测的结果。梯度下降法被广泛应用在最小化模型误差的参数优化算法上。梯度下降法通过多次迭代,并在每一步中最小化损失函数来预估模型的参数。学习率就是在迭代过程中,会控制模型的学习进度。

epochs = 10
batch_size = 64
learning_rate = 1e-2

损失函数

损失函数(loss function)用于评估模型的预测值和目标值之间的误差。

常见的损失函数包括用于回归任务的nn.MSELoss(均方误差)和用于分类的nn.NLLLoss(负对数似然)等。 nn.CrossEntropyLoss 结合了nn.LogSoftmaxnn.NLLLoss

nn.MSELoss, nn.NLLLossnn.CrossEntropyLoss是三种在深度学习框架PyTorch中常用的损失函数,它们在应用场景、计算方式以及性能表现等方面有所区别。具体分析如下:

  1. 应用场景

    • nn.MSELoss:主要用于回归问题,如图像超分辨率。
    • nn.NLLLoss:主要用于分类问题,尤其是二分类问题。
    • nn.CrossEntropyLoss:广泛用于多类别分类任务,如图像识别。
  2. 计算方式

    • nn.MSELoss:计算输入和目标之间每个元素的均方误差(平方L2范数)。
    • nn.NLLLoss:基于输入值和真实标签的概率分布,计算负对数似然损失。
    • nn.CrossEntropyLoss:将Softmax函数和负对数似然损失结合,直接对分类任务的预测结果进行优化。
  3. 性能表现

    • nn.MSELoss:适用于连续输出值的平滑性损失计算。
    • nn.NLLLoss:在处理概率分布时,能够衡量模型预测与真实标签之间的差异。
    • nn.CrossEntropyLoss:在类别不平衡的数据集中表现较好,能够有效处理不同类别权重。
  4. 易用性

    • nn.MSELoss:接口简单,适用于多种回归任务。
    • nn.NLLLoss:需要配合Softmax函数使用,适用于概率输出的模型。
    • nn.CrossEntropyLoss:内置Softmax和NLLoss,简化了代码实现,提高了易用性。
  5. 适用模型类型

    • nn.MSELoss:常用于线性回归、神经网络回归等模型。
    • nn.NLLLoss:适合概率输出模型,例如朴素贝叶斯分类器。
    • nn.CrossEntropyLoss:广泛用于各类神经网络分类模型,如CNN、RNN。
  6. 参数设置

    • nn.MSELoss:通过reduction参数控制是否对损失进行平均或求和。
    • nn.NLLLoss:主要设置无需额外参数。
    • nn.CrossEntropyLoss:可以设置weight参数以处理类别不平衡问题。
  7. 扩展性

    • nn.MSELoss:可应用于各种回归任务,包括单变量和多变量回归。
    • nn.NLLLoss:主要用于处理分类任务,特别是二分类问题。
    • nn.CrossEntropyLoss:不仅适用于静态数据集,也适用于大规模数据集和实时数据流。

针对这三种损失函数的应用,以下是一些注意事项:

  1. 当处理回归问题时,确保输出层无激活函数,以便得到连续值;对于分类问题,通常在输出层使用Softmax激活函数。
  2. 根据数据集的特点选择合适的损失函数,避免在类别不平衡的情况下直接使用MSELoss。
  3. 在使用MSELoss时,合理选择reduction参数以获得合适的损失计算方式(均值或求和)。
  4. 在训练过程中监控损失值的变化,以确保模型在正确学习;如果损失值异常,检查输入数据和模型实现。
  5. 考虑模型的应用场景,选择适当的优化器配合损失函数,以达到最佳训练效果。
# 损失函数
loss_fn = nn.CrossEntropyLoss()

# 优化器
optimizer = nn.SGD(model.trainable_params(), learning_rate=learning_rate)

# 训练与评估
# Define forward function
def forward_fn(data, label):
    logits = model(data)
    loss = loss_fn(logits, label)
    return loss, logits

# Get gradient function
grad_fn = mindspore.value_and_grad(forward_fn, None, optimizer.parameters, has_aux=True)

# Define function of one-step training
def train_step(data, label):
    (loss, _), grads = grad_fn(data, label)
    optimizer(grads)
    return loss

def train_loop(model, dataset):
    size = dataset.get_dataset_size()
    model.set_train()
    for batch, (data, label) in enumerate(dataset.create_tuple_iterator()):
        loss = train_step(data, label)

        if batch % 100 == 0:
            loss, current = loss.asnumpy(), batch
            print(f"loss: {loss:>7f}  [{current:>3d}/{size:>3d}]")

def test_loop(model, dataset, loss_fn):
    num_batches = dataset.get_dataset_size()
    model.set_train(False)
    total, test_loss, correct = 0, 0, 0
    for data, label in dataset.create_tuple_iterator():
        pred = model(data)
        total += len(data)
        test_loss += loss_fn(pred, label).asnumpy()
        correct += (pred.argmax(1) == label).asnumpy().sum()
    test_loss /= num_batches
    correct /= total
    print(f"Test: \n Accuracy: {(100*correct):>0.1f}%, Avg loss: {test_loss:>8f} \n")


# 训练模型
loss_fn = nn.CrossEntropyLoss()
optimizer = nn.SGD(model.trainable_params(), learning_rate=learning_rate)

for t in range(epochs):
    print(f"Epoch {t+1}\n-------------------------------")
    train_loop(model, train_dataset)
    test_loop(model, test_dataset, loss_fn)
print("Done!")

  • 25
    点赞
  • 15
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值