药片缺陷检测数据集,使用YOLO,PASICAL VOC XML,COCO JSON格式标注,可识别药品是否有缺陷,是否完整

作者简介:

        高科,先后在 IBM PlatformComputing从事网格计算,淘米网,网易从事游戏服务器开发,拥有丰富的C++,go等语言开发经验,mysql,mongo,redis等数据库,设计模式和网络库开发经验,对战棋类,回合制,moba类页游,手游有丰富的架构设计和开发经验。

       并且深耕深度学习和数据集训练,提供商业化的视觉人工智能检测和预警系统(煤矿,工厂,制造业,消防等领域的工业化产品),合作开发商业性游戏

(谢谢你的关注) 

===================================================================== 

关于数据集

药片缺陷检测数据集是用于训练和评估药片缺陷检测模型的数据集。该数据集包含了一系列药片的图像,每张图像都被标记为正常或者存在不同类型的缺陷。

数据集中的药片图像是通过工业相机或者其他成像设备拍摄得到的。每张图像都被标注了图像类别和缺陷类别。常见的药片缺陷包括但不限于破裂、碎片、污染、凹陷等。

数据集的规模可以根据实际需要进行设计,通常应包含足够多的正常样本和各类缺陷样本。为了提高模型的泛化能力,可以将数据集进行划分,一部分用于训练模型,一部分用于验证和评估模型性能。

使用这个数据集可以帮助药品生产企业和药品监管机构提高药品质量的监控和管理能力,确保药品的质量和安全性。此外,该数据集也可用于研究和开发药品缺陷检测算法和模型。

药片缺陷检测数据集,8625张图片,使用YOLO,PASICAL VOC XML,COCO JSON格式标注,可识别药品是否有缺陷,是否完整

关于train,test,validation集

在机器学习和深度学习中,常常会将数据集分为训练集(train set)、测试集(test set)和验证集(validation set)三部分。

训练集(train set)是用于模型的训练的数据集。在训练过程中,模型通过学习训练集中的样本来调整自己的参数,以使其能够更好地对未知数据进行预测。训练集通常是最大的数据集,因为越多的数据可以提供更多的信息和更好的训练效果。

测试集(test set)是用于评估模型的泛化能力的数据集。在模型训练完成后,使用测试集中的样本来评估模型的性能,判断模型在未知数据上的表现。测试集应该是独立于训练集的,以确保对模型进行正确的评估和比较。

验证集(validation set)用于调整模型的超参数,如学习率、正则化参数等。在训练过程中,通过在验证集上评估模型的性能,可以选择最优的超参数组合,从而改善模型的泛化能力。与测试集一样,验证集也应该是独立于训练集的,以确保调整的超参数不会对模型的性能造成过拟合。 

有缺陷的标注信息:

无缺陷的标注信息

数据集下载:

8625张图片的数据集:

yolov11:https://download.csdn.net/download/pbymw8iwm/90155415

yolov9:https://download.csdn.net/download/pbymw8iwm/90155417

yolob8:https://download.csdn.net/download/pbymw8iwm/90155414

yolov7:https://download.csdn.net/download/pbymw8iwm/90155413

yolov5:https://download.csdn.net/download/pbymw8iwm/90155416

coco json:https://download.csdn.net/download/pbymw8iwm/90155418

pasical voc xml: https://download.csdn.net/download/pbymw8iwm/90155412

11832张图片的数据集(10324张训练集,1505张验证集,其中有缺陷的1008张):

yolov11:https://download.csdn.net/download/pbymw8iwm/90696069

yolov9:https://download.csdn.net/download/pbymw8iwm/90696078

yolov8:https://download.csdn.net/download/pbymw8iwm/90696083

yolov7:https://download.csdn.net/download/pbymw8iwm/90696086

yolov5:https://download.csdn.net/download/pbymw8iwm/90696095

pasicla voc xml:https://download.csdn.net/download/pbymw8iwm/90696100

darknet:https://download.csdn.net/download/pbymw8iwm/90696110

coco json: https://download.csdn.net/download/pbymw8iwm/90696116

使用场景

药片缺陷检测数据集可以用于以下场景:

1. 医药生产企业:药片生产企业可以使用该数据集来训练机器学习模型,以自动检测和排除生产过程中出现的药片缺陷。这有助于提高生产效率和产品质量,减少人力资源成本。

2. 药店和药房:药店和药房可以使用该数据集来开发自动化的药品检测系统。该系统可以帮助检测药片的缺陷,例如颜色不符、形状变形、表面有裂纹等。这有助于保障药品质量,防止销售低质量或假冒药品。

3. 医疗器械监督机构:监督机构可以使用该数据集来评估药片生产企业的质量控制情况。通过对药片缺陷的检测和分析,监督机构可以评估企业的质量管理体系,并采取必要的监管措施。

4. 研究和开发机构:研究和开发机构可以使用该数据集来开发新的药片缺陷检测技术和算法。这有助于推动相关领域的研究进展,并提供更准确和高效的检测方法。

总之,药片缺陷检测数据集的使用场景涵盖了药品生产、销售、监督和研究等各个环节,可以帮助提高药品质量、保障患者安全并推动相关领域的发展。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值