12、数字万用表的使用与原理详解

数字万用表的使用与原理详解

1. 数字万用表的基本特性

数字万用表(DMM)是当今世界最常见的电子测试仪器之一,可用于测量电流、电阻等多种参数。相较于模拟万用表,数字万用表因精度更高、功能更多而被广泛接受。市场上的数字万用表种类繁多,从简单的 3 1/2 和 4 1/2 位手持型到特殊的系统型和台式型,都能满足不同工程师和技术人员的需求,且市场趋势是朝着更高精度、更多功能和更低价格发展。

在使用数字万用表时,其规格参数应明确告知该表在保持测量精度的情况下所能处理的最大波峰因数。真有效值(True r.m.s.)表在波形的有效值电压处于量程设置中间位置时,能处理更高的波峰因数。通常,数字万用表在量程上限附近可能耐受波峰因数为 3,但在量程中间位置可能能处理波峰因数为 5 的情况。因此,如果要测量波峰因数大于 3 的波形,应调整数字万用表的量程,使被测电压接近测量范围的中心。

部分高性能数字万用表,如飞利浦 PM2525 和 2530 型号,能够测量交流或直流耦合信号的真有效值,这是通过微处理器子系统分别计算交流和直流分量来实现的。还有泰克的 TX3 和 TX1 等也是真有效值万用表。在福禄克万用表系列中,187 和 189 型号显示“真有效值 - 直流耦合”,而 170 和 110 型号显示“真有效值 - 交流”。

若万用表规格或设计表明其内部有效值转换技术仅采用“交流耦合”方式(即在有效值转换中不测量直流分量),用户可分别测量直流和交流分量,然后应用以下公式计算总有效值:
[r.m.s. {total} = \sqrt{(a.c. r.m.s. {component})^2 + (d.c._{component})^2}]

基于径向基函数神经网络RBFNN的自适应滑模控制学习(Matlab代码实现)内容概要:本文介绍了基于径向基函数神经网络(RBFNN)的自适应滑模控制方法,并提供了相应的Matlab代码实现。该方法结合了RBF神经网络的非线性逼近能力和滑模控制的强鲁棒性,用于解决复杂系统的控制问题,尤其适用于存在不确定性和外部干扰的动态系统。文中详细阐述了控制算法的设计思路、RBFNN的结构权重更新机制、滑模面的构建以及自适应律的推导过程,并通过Matlab仿验证了所提方法的有效性和稳定性。此外,文档还列举了大量相关的科研方向和技术应用,涵盖智能优化算法、机器学习、电力系统、路径规划等多个领域,展示了该技术的广泛应用前景。; 适合人群:具备一定自动控制理论基础和Matlab编程能力的研究生、科研人员及工程技术人员,特别是从事智能控制、非线性系统控制及相关领域的研究人员; 使用场景及目标:①学习和掌握RBF神经网络滑模控制相结合的自适应控制策略设计方法;②应用于电机控制、机器人轨迹跟踪、电力电子系统等存在模型不确定性或外界扰动的实际控制系统中,提升控制精度鲁棒性; 阅读建议:建议读者结合提供的Matlab代码进行仿实践,深入理解算法实现细节,同时可参考文中提及的相关技术方向拓展研究思路,注重理论分析仿验证相结合。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值