归纳推理中的预测方法与收敛性分析
1. 归纳推理基础与Solomonoff方法
在归纳推理中,错误收敛速度在考虑可数多个假设时比考虑不可数多个假设要快得多。然而,在实际数据规模有限的情况下,这些结论可能具有误导性。以参数为 (p) 的伯努利过程生成的序列预测为例,若已知 (p) 为有理数,使用Solomonoff方法是否能在有限初始段上进行更好的预测呢?答案是不一定,除非 (p) 是简单有理数,因为误差存在一个与 (K(p)) 成比例的乘法因子。对于长度为 (n) 的有限段,只有当 (K(p) < \frac{1}{2} \ln n) 时,考虑所有 (p) 的统计方法才劣于Solomonoff方法。即便 (p) 非常复杂或不可计算,Solomonoff过程也不会比标准统计方法差。
假设关于某现象的概率理论可表示为 ({0, 1}^\infty) 上的可计算测度 (\mu),通用半测度 (M) 可视为所有可计算测度的假设混合,简单测度权重更大。Solomonoff归纳公式 (M(y|x)) 用于估计给定观测结果序列 (x) 时预测结果 (y) 的实际概率 (\mu(y|x)),它可看作奥卡姆剃刀的数学形式:找到所有符合数据的规则,然后根据其上的通用分布预测 (y)。但将这一原则形式化用于概率理论 (\mu) 时,会因复杂度 (K(\mu)) 和随机性缺陷 (\log \frac{M(x)}{\mu(x)}) 之间的权衡而遇到困难,当前方法在 (x) 很大且 (\mu) 简单时才准确。
2. 比率收敛性分析
定理表明条件通用测度在差值上收敛于每个条件可计算测度,但这未解决比率收敛问题,因为差值变小并不意味着比率趋近于 1,例如差值中的两项以不同速率趋近于 0 时。
超级会员免费看
订阅专栏 解锁全文
916

被折叠的 条评论
为什么被折叠?



