Python Logistic Regression(逻辑回归)实现预测某事件

本文介绍了如何利用Python的sklearn.linear_model库实现逻辑回归模型来预测某事件。通过对2017年高中理科一模成绩单数据的处理,训练模型并筛选有效特征,最终得出较高的预测准确率。
摘要由CSDN通过智能技术生成

逻辑回归模型,自己的理解逻辑就相当于是非,那就只有0,1的情况。这个是我在一个大神那看到的,https://blog.csdn.net/zouxy09/article/details/20319673


逻辑回归模型用于分类,可以知道哪几个影响因素占主导地位,从而可以预测某事件。

我从网上下载了一个2017某高中理科一模成绩单,模糊姓名和学校,具体长这样:


最后一列是能否过二本,搜索当年二本线480,sum>480为1,否则为0。一共有10002条数据。

步骤:1、读取数据 。

 2、将特征(影响因素)和结果变成矩阵的形式。

3、导入模块sklearn.linear_model 下RandomizedLogisticRegression,进行实例化。

4、通过fit()进行训练模型。

5、通过get_support()筛选有效特征,也是降维的过程。

6、简化模型,训练模型。

注意,y=dataf.iloc[:,7].as_matrix()这句不能写成y=dataf.iloc[:,0:7].as_matrix(),后者是形成一个二维数组,前者是一个一维数组,否则会出现DataConversionWarning: A column-vector y was passed whe

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值