植物病害识别与多模态情感分析的技术探索
在当今科技飞速发展的时代,计算机科学在农业和自然语言处理等众多领域都发挥着至关重要的作用。本文将围绕植物病害识别中卷积神经网络(CNN)模型的应用,以及多模态情感分析中循环神经网络(RNN)的创新方法展开探讨。
植物病害识别:CNN模型比较
植物病害的准确识别对于农业生产至关重要。研究人员采用了多种CNN模型进行植物病害的识别,并对不同模型的性能进行了比较。
| CNN模型 | 准确率(%) | 轮数 | 耗时 | 每步耗时 | 损失 |
| ---- | ---- | ---- | ---- | ---- | ---- |
| Alex Net | 95.48 | 64 | 227 s | 412 ms/step | 0.2354 |
| VGG - 19 | 98.27 | 50 | 234 s | 427 ms/step | 0.0646 |
| VGG - 16 | 98.64 | 48 | 278 s | 489 ms/step | 0.0643 |
| ResNet50 | 99.77 | 4 | 298 s | 540 ms/step | 0.0544 |
从表格中可以看出,ResNet50模型在准确率上表现最为出色,仅需4轮训练就能达到99.77%的准确率,且损失值最低。这表明ResNet50在植物病害识别任务中具有显著的优势。
为了进一步验证模型的性能,研究人员还使用了包含54,300多张图像、38个子类别的数据集对部分模型进行了测试。
| 模型 | 图像数量 | 子类 | 轮数 | 总准确率(%) |
| ---- | -