38、分子可视化中DCS内核的优化与性能分析

分子可视化中DCS内核的优化与性能分析

1. 线程粒度调整

在分子可视化的计算中,DCS(离散卷积求和)内核的优化是提高性能的关键。最初,内核代码中循环的外两层被移除,由内核调用中的执行配置参数替代。这一操作类似于MRI案例研究中的步骤,具体的内核调用留给读者自行实践。剩余的内核代码直接对应最内层循环的原始循环体。

内核的一个微妙但重要的方面是,它计算一组原子对网格点的贡献。网格点存储在全局内存中,每次内核调用都需要更新。为了隐藏全局内存延迟,代码在核函数开始时加载网格值,并在结束时使用,这有助于减少SM调度器隐藏全局内存延迟所需的线程束数量。

图15.5中的内核性能良好,但仍有提升空间。从代码中可以看出,每个线程每访问四个内存元素就执行九次浮点运算,表面上看这个比例不太理想,通常需要达到10或更高的比例才能避免全局内存拥塞。然而,所有四次内存访问都是针对 atominfo[] 数组,该数组元素会被缓存到每个SM的硬件缓存中,并广播给大量线程。通过类似MRI案例研究的计算可知,线程间对内存元素的大量重用使得常量缓存非常有效,将每次全局内存访问的浮点运算有效比例提高到远高于10,因此全局内存带宽不是该内核的限制因素。

尽管图15.5中的内核通过常量缓存避免了全局内存瓶颈,但每执行九次浮点运算仍需执行四次常量内存访问指令。这些内存访问指令消耗了本可用于提高浮点指令执行吞吐量的硬件资源,并且会消耗能量,这对于许多大规模并行计算系统来说是一个重要的限制因素。

为了解决这个问题,可以将多个线程融合在一起,使 atominfo[] 数据可以从常量内存中一次性获取,存储到寄存器中,并用于多个网格

基于径向基函数神经网络RBFNN的自适应滑模控制学习(Matlab代码实现)内容概要:本文介绍了基于径向基函数神经网络(RBFNN)的自适应滑模控制方法,并提供了相应的Matlab代码实现。该方法结合了RBF神经网络的非线性逼近能力和滑模控制的强鲁棒性,用于解决复杂系统的控制问题,尤其适用于存在不确定性和外部干扰的动态系统。文中详细阐述了控制算法的设计思路、RBFNN的结构权重更新机制、滑模面的构建以及自适应律的推导过程,并通过Matlab仿真验证了所提方法的有效性和稳定性。此外,文档还列举了大量相关的科研方向和技术应用,涵盖智能优化算法、机器学习、电力系统、路径规划等多个领域,展示了该技术的广泛应用前景。; 适合人群:具备一定自动控制理论基础和Matlab编程能力的研究生、科研人员及工程技术人员,特别是从事智能控制、非线性系统控制及相关领域的研究人员; 使用场景及目标:①学习和掌握RBF神经网络滑模控制相结合的自适应控制策略设计方法;②应用于电机控制、机器人轨迹跟踪、电力电子系统等存在模型不确定性或外界扰动的实际控制系统中,提升控制精度鲁棒性; 阅读建议:建议读者结合提供的Matlab代码进行仿真实践,深入理解算法实现细节,同时可参考文中提及的相关技术方向拓展研究思路,注重理论分析仿真验证相结合。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值