分子可视化中DCS内核的优化与性能分析
1. 线程粒度调整
在分子可视化的计算中,DCS(离散卷积求和)内核的优化是提高性能的关键。最初,内核代码中循环的外两层被移除,由内核调用中的执行配置参数替代。这一操作类似于MRI案例研究中的步骤,具体的内核调用留给读者自行实践。剩余的内核代码直接对应最内层循环的原始循环体。
内核的一个微妙但重要的方面是,它计算一组原子对网格点的贡献。网格点存储在全局内存中,每次内核调用都需要更新。为了隐藏全局内存延迟,代码在核函数开始时加载网格值,并在结束时使用,这有助于减少SM调度器隐藏全局内存延迟所需的线程束数量。
图15.5中的内核性能良好,但仍有提升空间。从代码中可以看出,每个线程每访问四个内存元素就执行九次浮点运算,表面上看这个比例不太理想,通常需要达到10或更高的比例才能避免全局内存拥塞。然而,所有四次内存访问都是针对 atominfo[] 数组,该数组元素会被缓存到每个SM的硬件缓存中,并广播给大量线程。通过类似MRI案例研究的计算可知,线程间对内存元素的大量重用使得常量缓存非常有效,将每次全局内存访问的浮点运算有效比例提高到远高于10,因此全局内存带宽不是该内核的限制因素。
尽管图15.5中的内核通过常量缓存避免了全局内存瓶颈,但每执行九次浮点运算仍需执行四次常量内存访问指令。这些内存访问指令消耗了本可用于提高浮点指令执行吞吐量的硬件资源,并且会消耗能量,这对于许多大规模并行计算系统来说是一个重要的限制因素。
为了解决这个问题,可以将多个线程融合在一起,使 atominfo[] 数据可以从常量内存中一次性获取,存储到寄存器中,并用于多个网格
超级会员免费看
订阅专栏 解锁全文
1054

被折叠的 条评论
为什么被折叠?



