论文阅读(9)通过堆叠对抗式学习改善皮肤病变的分割能力

Improving Skin Lesion Segmentation via Stacked Adversarial Learning

摘要

  • 全卷积神经网络在普通的图像分割中取得了不小的成果,普通图像分割的大型数据集是其成功的一大要素
  • 医学图像的数据样本匮乏
  • 针对医学图像研究,一些研究者采用了各式各样的损失函数和后处理技术
  • 本文基于GAN提出了一个堆叠的对抗学习网络架构来生成更多的数据特征属性。
  • 在 ISIC2017的数据集上进行评估,较于目前先进的成果,本文的解决方案更加准确且具有强鲁棒性

1、引言

指出FCN对于医学语义分割的限制
  • FCN的成功基于普通图像的数据集大
  • 面对的问题一:医学图像数据样本少
  • 面对的问题二:皮肤镜图像的本身问题
  • 传统的数据增广方式的缺陷:只是复制了现有的训练特征,而没有添加各种用于学习的新特征。
为了应对上述问题,一些研究人员的工作主要集中在
  • 设计使用不同的代价函数和后处理技术
    • 将Jaccard Index loss代替交叉熵损失函数
    • 细胞自动机算法用于后处理
  • 特定于数据的成本函数对不同数据集的泛化能力有限
  • 对后处理算法的依赖可能会覆盖FCN结果,因为后处理通常是无监督的,不能完全描述训练数据+计算费时
本文提出的解决方案

我们利用生成式对抗网络9,并添加一个堆叠式对抗学习架构,以特定类别的方式迭代学习皮肤病变特征,例如黑色素瘤和非黑色素瘤类别,然后将学习到的皮肤病变特征添加到现有的FCN训练数据中。我们的假设是,这种方法将增加整体的特征多样性,然后让FCN学习,然后提高分割的准确性。

2、方法和材料

2.1 全卷积神经网络

介绍了一下FCN的相关内容

2.2 堆叠对抗学习(GAN)用于皮肤病变分割

对抗学习(又称生成式逆向网络(GANs))有2个主要组成部分:一个捕获数据分布的生成式模型G(生成器)和一个估计样本来自训练数据而非生成器G的概率 的判别模型D(判别器).生成器被训练成产生难以被对抗训练的判别器与真实数据区分的输出,而判别器被训练成检测生成器创建的合成数据。
在这里插入图片描述

2.3 对抗学习提高分割精度

利用生成的数据和原数据训练FCN
在这里插入图片描述

3、 结果和讨论

3.1 试验设置

数据集:ISIC2017
对比网络:VGGNet,ResNet,2017年挑战赛的前三名
比较指标:Dice similarity coefficient 和Jaccard Index

3.2 结果

在这里插入图片描述
在这里插入图片描述

4、结论和未来的工作

提出了一种基于FCN的层叠对抗性学习(SAL)方法来改进基于FCN的皮肤镜图像分割方法。我们的SAL以特定类别的方式反复学习皮肤病变特征,例如黑色素瘤和非黑色素瘤,从而提高了训练数据中特征的多样性。我们在ISIC 2017皮肤损伤挑战数据集上的实验表明,我们的方法改进了VGGNet和最新的基于ResNet的FCN分割方法。此外,当我们将SAL与ResNet相结合时,这是执行得最好的方法。

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值