Generative adversarial networks to segment skin lesions

简介

这是一篇用GAN进行皮肤病变图的分割论文,由于皮肤病变图具有很大的可变性,因此给分割带来挑战,这里提出的方法包括两个models:一个合成精确的皮肤病变分割mask的全卷积网络,和一个区分合成的和真实的分割mask的全卷积网络。在我们的工作中,给出了一个训练集,generator/segmentor尝试输出与ground truth匹配的合成图,同时discriminator/critic用来区分合成图和ground truth.

方法

我们的目标是从边缘分割skin lesions,在外观多样性上有独立性,并且没有手工的干预,我们将这里问题看作一个二值密度标记任务:给一个皮肤镜图片,我们旨在预测每一个像素点是’lesions’还是’background’。给一个现有的全卷积分割模型,即合成概率分割mask的segmentor,我们提出设计和清空一个带有单个输出点的DCNN,即critic,用来区别合成分割mask和真实的ground truth。
这里写图片描述

1 segmentor

这里我们用UNet作为segmentor,用 IrgbI I r g b ∈ I 表示输入图像,用 τT τ ∈ T 表示ground truth mask, MM M ∈ M 表示合成分割mask,分割mask中每一个像素点 i i M={mi,i=1,,,,,N}取值范围为 L=[0,1] L = [ 0 , 1 ] ,并且每一个像素点 τ={ti,i=1,,,N} τ = { t i , i = 1 , , , N } 取值范围为{0,1},给出输入图像 Irgb I r g b 和学习参数 θs θ s ,则标签分配 M M 的条件概率为:

p(m|Irgb:θs)=σ(ψθs(Irgb))

这里 σ() σ ( ⋅ ) 是用在分割网络输出层 ψθs() ψ θ s ( ⋅ ) 的激活函数sigmoid,我们使用二值交叉熵损失函数:

Lθs=1Ni=1N[tilog(mi)+(1ti)log(1mi)] L θ s = − 1 N ∑ i = 1 N [ t i l o g ( m i ) + ( 1 − t i ) l o g ( 1 − m i ) ]

ti t i mi m i 分表表示预测的和真实标签的像素点。

2 critic

我们扩展一个DCNN作为判别网络,其接受一个皮肤镜图片和或者一个合成图或者一个真实的病变分割mask作为输入,并尝试区分这两个。特别的,合成图或者真实的病变分割图被连接到RGB通道中,并被分配为1(指真实的图)或者0(指合成图),新的4通道图输入给critic,最后一个单输出点预测真实的二值标签,critic网络包括6个3x3卷积层,3个最大池化层和3个线性层,并且都使用ReLu激活函数,除了最后一层使用sigmoid函数,每一个卷积操作后面都使用了batch normalization.
这里写图片描述
综上所述,让 IrgbI I r g b ∈ I 作为输入图并且 S{M,τ} S ∈ { M , τ } 是合成图和真实分割mask,在输入连接的 (Irgb,S) ( I r g b , S ) 后,将得到一个标签值 L={0,1} L = { 0 , 1 } ,一旦输入,label分配y的条件概率为:

p(y|Irgb,S;θc)=σ(ψθc(Irgb,S)) p ( y | I r g b , S ; θ c ) = σ ( ψ θ c ( I r g b , S ) )

θc θ c 表示critic网络的参数,并且 ψθc ψ θ c 代表critic网络的输出,跟分割网络相似,这里我们使用二值交叉熵作为损失训练critic网络,定义为 Lθc L θ c

3 训练

critic网络的误差会反响传播给segmentor进行训练。因此,更新segmentor的最终损失函数为:

Lfinal=Lθs+λLθc L f i n a l = L θ s + λ L θ c

这里的 λ=0.2 λ = 0.2 是用来平衡critic网络误差的系数。

  • 2
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值