turtle绘图与数学计算实战

15、使用 turtle 库绘制一个圆,通过增加 turtle 每次前进的距离来增大圆的大小

以下是使用 Python 的 turtle 库实现绘制圆,并通过增加 turtle 每次前进的距离来增大圆大小的示例代码:

import turtle

# 创建 turtle 对象
t = turtle.Turtle()

# 设置每次前进的距离(半径)
radius = 50

# 绘制圆
t.circle(radius)

# 增加半径
enlarged_radius = 100

# 移动 turtle 到合适位置,避免重叠
# 这里假设将 turtle 移动到圆心位置并重新绘制
# 先抬起画笔,移动到圆心,再放下画笔
# 圆心位置可根据需要调整
# 这里简单假设圆心在当前位置

# 抬起画笔
t.penup()

# 移动到圆心(这里假设圆心在当前位置)

# 放下画笔
t.pendown()

# 绘制更大的圆
t.circle(enlarged_radius)

# 完成绘制,保持窗口打开
turtle.done()

在上述代码中,首先使用 circle 方法绘制一个半径为 50 的圆,然后增加半径到 100,再次调用 circle 方法绘制一个更大的圆。通过调整 radius 的值,可以控制圆的大小。

16、使用 turtle 库绘制一个圆,要求每次前进的距离逐渐增加

以下是使用 Python 的 turtle 库实现每次前进距离逐渐增加来绘制近似圆的代码示例:

import turtle
# 创建 turtle 对象
pen = turtle.Turtle()
# 初始前进距离
step = 1
# 每次增加的距离
increase = 0.1
for i in range(360):
    # 前进并转向
    pen.forward(step)
    pen.left(1)
    # 增加前进距离
    step += increase
# 完成绘制

上述代码中,每次循环前进的距离都会增加 increase 的值,通过不断前进和左转,近似绘制出一个圆。

17、使用 turtle 库绘制一个红色的正六边形,并在其中写上 ‘STOP’ 字样

以下是使用 Python 的 turtle 库实现绘制红色正六边形并在其中写上 'STOP' 字样的代码:

import turtle
# 设置画布和画笔
screen = turtle.Screen()
pen = turtle.Turtle()
# 设置画笔颜色为红色
pen.color('red')
# 绘制正六边形
side_length = 100
for _ in range(6):
    pen.forward(side_length)
    pen.left(60)
# 移动画笔到六边形内部
pen.penup()
pen.goto(0, 20)
pen.pendown()
# 写入 'STOP' 字样
pen.write('STOP', align='center', font=('Arial', 24, 'normal'))
# 隐藏画笔
pen.hideturtle()
# 保持窗口打开
screen.mainloop()

上述代码首先导入了 turtle 库,然后设置了画布和画笔,将画笔颜色设置为红色。接着使用循环绘制了一个正六边形,之后将画笔移动到六边形内部并写入 'STOP' 字样,最后隐藏画笔并保持窗口打开。

18、使用 turtle 库根据命令行参数绘制指定边数、轮廓颜色和填充颜色的图案

以下是一个使用 Python 的 turtle 库根据命令行参数绘制指定边数、轮廓颜色和填充颜色的图案的示例代码:

import turtle
import sys

def draw_polygon(sides, outline_color, fill_color):
    t = turtle.Turtle()
    screen = turtle.Screen()
    # 设置轮廓颜色和填充颜色
    t.pencolor(outline_color)
    t.fillcolor(fill_color)
    # 开始填充颜色
    t.begin_fill()
    # 计算每个内角的度数
    angle = 360 / sides
    # 绘制多边形
    for _ in range(sides):
        t.forward(100)
        t.left(angle)
    #
内容概要:本文详细介绍了一个基于CNN-GRUAdaBoost集成的深度学习模型在时间序列预测中的完整项目实现。该模型通过卷积神经网络(CNN)提取局部时空特征,利用门控循环单元(GRU)捕捉长期时序依赖,并结合AdaBoost自适应提升算法增强模型泛化能力鲁棒性,有效应对非线性、噪声干扰和复杂动态变化的挑战。项目涵盖从数据生成、预处理、模型构建、训练优化到结果可视化和GUI交互界面开发的全流程,提供了完整的代码示例模块化系统架构设计,支持金融、能源、交通、医疗等多个领域的高精度预测应用。; 适合人群:具备一定Python编程基础和机器学习知识,熟悉深度学习框架(如TensorFlow/Keras)的数据科学家、算法工程师及高校研究人员,尤其适合从事时间序列分析、智能预测系统开发的相关从业者。; 使用场景及目标:①实现高精度时间序列预测,如股票价格、电力负荷、交通流量等;②构建具备强鲁棒性和抗噪能力的工业级预测系统;③开发集成深度学习集成学习的复合模型以提升预测稳定性;④通过GUI界面实现模型的便捷部署交互式分析。; 阅读建议:建议读者结合文档中的代码逐步实践,重点关注数据预处理、模型集成机制可视化模块的设计逻辑,同时可在不同数据集上进行迁移实验,深入理解CNN-GRUAdaBoost协同工作的原理优势。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值