peach_yang的博客

算法 ACM

UVA 11806 Cheerleaders

Question:
In most professional sporting events, cheerleaders play a major role in entertaining the spectators. Their
roles are substantial during breaks and prior to start of play. The world cup soccer is no exception.
Usually the cheerleaders form a group and perform at the centre of the field. In addition to this group,
some of them are placed outside the side line so they are closer to the spectators. The organizers would
like to ensure that at least one cheerleader is located on each of the four sides. For this problem, we
will model the playing ground as an M × N rectangular grid. The constraints for placing cheerleaders
are described below:
• There should be at least one cheerleader on each of the four sides. Note that, placing a cheerleader
on a corner cell would cover two sides simultaneously.
• There can be at most one cheerleader in a cell.
• All the cheerleaders available must be assigned to a cell. That is, none of them can be left out.
The organizers would like to know, how many ways they can place the cheerleaders while maintaining
the above constraints. Two placements are different, if there is at least one cell which contains a
cheerleader in one of the placement but not in the other.
Input
The first line of input contains a positive integer T ≤ 50, which denotes the number of test cases. T
lines then follow each describing one test case. Each case consists of three nonnegative integers, 2 ≤ M,
N ≤ 20 and K ≤ 500. Here M is the number of rows and N is the number of columns in the grid. K
denotes the number of cheerleaders that must be assigned to the cells in the grid.
Output
For each case of input, there will be one line of output. It will first contain the case number followed by
the number of ways to place the cheerleaders as described earlier. Look at the sample output for exact
formatting. Note that, the numbers can be arbitrarily large. Therefore you must output the answers
modulo 1000007.
Sample Input
2
2 2 1
2 3 2
Sample Output
Case 1: 0
Case 2: 2
题意大意:一个方阵要四个边界都要有人站(即最上边最下边最左边最右边)
思路:利用容斥定理,求A,B,C,D四边没人站
(http://acm.hust.edu.cn/vjudge/contest/121560#problem/C)

#include <iostream>
#include <cstdio>
using namespace std;
const int MOD=1000007;
typedef long long LL;
LL f[405][405];
int main()
{
    for(int i=0;i<=400;i++)
    {
        f[i][i]=f[i][0]=1;
        for(int j=1;j<i;j++)
            f[i][j]=(f[i-1][j-1]+f[i-1][j])%MOD;  //打表,打印杨辉三角
    }
    int T,n,m,k;
    scanf("%d",&T);
    for(int i=1;i<=T;i++)
    {
        scanf("%d%d%d",&n,&m,&k);
         LL way=0;
        for(int j=0;j<=15;j++)
        {
            int t=0,l=n,c=m ;
            if(j&1)      //充分利用位运算求p(a)+p(b)+p(c)......-p(abcd)
            {t++;l--;}
            if(j&2)
            {t++;c--;}
            if(j&4)
            {t++;l--;}
            if(j&8)
            {t++;c--;}
            if(t%2==0)  //原本偶数应该被减,但现在是总数减去,所以偶数被加,奇数被减
                way=(way+f[c*l][k])%MOD; 
            else way=(way+MOD-f[c*l][k])%MOD; //减法求MOD
        }
        printf("Case %d: %lld\n",i,way);
    }
    return 0;
}

体会:遇见复杂问题不易直接求解的可以换个思路,利用容斥定理,同时要灵活运用位运算。

阅读更多
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/peach_yang/article/details/52353510
文章标签: 算法 ACM
个人分类: 编程成长 UVA
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

不良信息举报

UVA 11806 Cheerleaders

最多只允许输入30个字

加入CSDN,享受更精准的内容推荐,与500万程序员共同成长!
关闭
关闭