Question;
Before being an ubiquous communications gadget, a mobile
was just a structure made of strings and wires suspending
colourfull things. This kind of mobile is usually found hanging
over cradles of small babies.
The figure illustrates a simple mobile. It is just a wire,
suspended by a string, with an object on each side. It can
also be seen as a kind of lever with the fulcrum on the point where the string ties the wire. From the
lever principle we know that to balance a simple mobile the product of the weight of the objects by
their distance to the fulcrum must be equal. That is Wl × Dl = Wr × Dr where Dl
is the left distance,
Dr is the right distance, Wl
is the left weight and Wr is the right weight.
In a more complex mobile the object may be replaced by a sub-mobile, as shown in the next figure.
In this case it is not so straightforward to check if the mobile is balanced so we need you to write a
program that, given a description of a mobile as input, checks whether the mobile is in equilibrium or
not.
Input
The input begins with a single positive integer on a line by itself indicating the number
of the cases following, each of them as described below. This line is followed by a blank
line, and there is also a blank line between two consecutive inputs.
The input is composed of several lines, each containing 4 integers separated by a single space.
The 4 integers represent the distances of each object to the fulcrum and their weights, in the format:
Wl Dl Wr Dr
If Wl or Wr is zero then there is a sub-mobile hanging from that end and the following lines define
the the sub-mobile. In this case we compute the weight of the sub-mobile as the sum of weights of
all its objects, disregarding the weight of the wires and strings. If both Wl and Wr are zero then the
following lines define two sub-mobiles: first the left then the right one.
Output
For each test case, the output must follow the description below. The outputs of two
consecutive cases will be separated by a blank line.
Write ‘YES’ if the mobile is in equilibrium, write ‘NO’ otherwise.
Sample Input
1
0 2 0 4
0 3 0 1
1 1 1 1
2 4 4 2
1 6 3 2
Sample Output
YES
题目大意:给你一些输入描述二叉树天平w1,d1,w2,d2,让你判断这个天平是否平衡w1*d1==w2*d2,当w1或w2 =0时,表示这其实是一个子天平,接下来会描述这个天平,当w1=w2是先描述左子天平再描述 右子天平
解题思路:这是一道很重要的题,运用递归建树建树的同时判断二叉树是否平衡,具体操作见代码注释
(http://vjudge.net/contest/132880#problem/D)
#include <iostream>
#include <cstdio>
#include <string>
#include <algorithm>
using namespace std;
bool solve(int &w)
{
int w1,d1,w2,d2;
bool b1=true,b2=true;
scanf("%d%d%d%d",&w1,&d1,&w2,&d2);
if(!w1) b1=solve(w1); //如果为0,则递归建其的左子树
if(!w2) b2=solve(w2); //如果为0,则递归建其的右子树
w=w1+w2; //将这棵子树的左右权值相加,方便与其对应的子树相比较判断
return b1&&b2&&(w1*d1==w2*d2); //一棵树如果左子树的各子树,右子树各子树都平衡并且自身左右平衡才算平衡
}
int main()
{
int T,w;
scanf("%d",&T);
while (T--)
{
if(solve(w))
printf("YES\n");
else printf("NO\n");
if(T) cout<<endl;
}
return 0;
}
体会:这道题非常经典,要求对二叉树建树非常熟悉,所以要熟悉二叉树的各种建树