#include<iostream>
#include<cstdio>
#include<stack>
#include<cstdlib>
#include<queue>
#include<ctime>
#include<algorithm>
#define Gene_Num 10000
#define Descedant 1000
#define NUM 5
#define Cross_Chance 0.1
#define Varia_Chance 0.01
using namespace std;
class Gene{
public:
Gene(){}
Gene(const Gene& p){
for(int i = 0;i < 5;i++)
gene[i] = p.gene[i];
pro = p.pro;
num = p.num;
}
public:
int gene[20];
double num;
double pro;
};
//stack<Gene> turn;
Gene g[NUM];
Gene p[NUM];
Gene temp_cross[NUM];
Gene temp_select[NUM];
int MAX;
void Bin_Ini(int index,int num){
queue<int>q;
int tail = 4;
while(num > 2){
q.push(num % 2);
num /= 2;
}
while(!q.empty()){
g[index].gene[tail--] = q.front();
q.pop();
}
while(tail--)g[index].gene[tail] = 0;
}
void Initial(){
for(int i = 0;i < NUM;i++)
{
int
遗传算法实现函数最值问题【智能信息处理作业】C++
最新推荐文章于 2022-07-21 09:45:33 发布
本文介绍了一种使用C++编程实现遗传算法来寻找复杂函数的最值问题的方法,主要探讨了遗传算法的基本原理及其在智能信息处理作业中的应用。通过模拟生物进化过程,遗传算法能够有效搜索解决方案空间,找到近似最优解。
摘要由CSDN通过智能技术生成