遗传算法实现函数最值问题【智能信息处理作业】C++

本文介绍了一种使用C++编程实现遗传算法来寻找复杂函数的最值问题的方法,主要探讨了遗传算法的基本原理及其在智能信息处理作业中的应用。通过模拟生物进化过程,遗传算法能够有效搜索解决方案空间,找到近似最优解。
摘要由CSDN通过智能技术生成
#include<iostream>
#include<cstdio>
#include<stack>
#include<cstdlib>
#include<queue>
#include<ctime>
#include<algorithm>
#define Gene_Num 10000      
#define Descedant 1000 
#define NUM 5   
#define Cross_Chance 0.1  
#define Varia_Chance 0.01 
using namespace std;
class Gene{
	public:
		Gene(){}
		Gene(const Gene& p){
			for(int i = 0;i < 5;i++)
			gene[i] = p.gene[i];
			pro = p.pro;
			num = p.num;
		}
	public:
		int gene[20];
		double num;
		double pro;
};
//stack<Gene> turn;
Gene g[NUM];
Gene p[NUM];
Gene temp_cross[NUM];
Gene temp_select[NUM];
int MAX;
void Bin_Ini(int index,int num){      
	queue<int>q;
	int tail = 4;
	while(num > 2){
		q.push(num % 2);
		num /= 2;
	}
	while(!q.empty()){
		g[index].gene[tail--] = q.front();
		q.pop();
	}
	while(tail--)g[index].gene[tail] = 0;
}
void Initial(){
	for(int i = 0;i < NUM;i++)
	{
		int
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值