pytorch(4)Pytorch模型训练时从CPU与GPU之间的转换

1.如何进行迁移

使用Pytorch写的模型:

  • 对模型和相应的数据使用.cuda()处理。通过这种方式,我们就可以将内存中的数据复制到GPU的显存中去。从而可以通过GPU来进行运算了。
  • 另外一种方式,使用.to(device)的方式,将cpu的数据切换到gpu,如下:
#配置参数:config.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
data = data.to(config.device)

2.对数据的迁移

.cuda() 操作默认使用GPU 0也就是第一张显卡来进行操作。当我们想要存储在其他显卡中时可以使用 .cuda(<显卡号数>) 来将数据存储在指定的显卡中。还有很多种方式,具体参考官方文档。

对于不同存储位置的变量,我们是不可以对他们直接进行计算的。存储在不同位置中的数据是不可以直接进行交互计算的。

换句话说也就是上面例子中的 torch.FloatTensor 是不可以直接与 torch.cuda.FloatTensor 进行基本运算的。位于不同GPU显存上的数据也是不能直接进行计算的。

对于Variable,其实就仅仅是一种能够记录操作信息并且能够自动求导的容器,实际上的关键信息并不在Variable本身,而更应该侧重于Variable中存储的data。

这里举一个例子,训练的时候,怎么在epoch中,将数据从cpu转到gpu:

   for epoch in range(config.num_epochs):
        print('Epoch [{}/{}]'.format(epoch + 1, config.num_epochs))
        total_eval_accuracy = 0
        total_loss = 0
        for step, batch in enumerate(train_dataloader):
            #重点的两句话,batch[0]是训练数据,batch[1]是训练数据的label
            batch[0] = torch.LongTensor(batch[0]).to(config.device)
            batch[1] = torch.LongTensor(batch[1]).to(config.device)

3.模型迁移

一行代码:

#config是配置文件,里面包含了设备信息,模型参数等,大致理解意思就好,不要在乎config里面具体是什么。
model = Classifier.nn(config.para)
model = model.to(config.device)

4.汇总

在代码中使用GPU训练主要有三处需要注意:模型转为cuda,数据转为cuda,和输出数据去cuda,转为numpy。修改的地方包括将数据的形式变成 GPU 能读的形式, 然后将 网络模型 也变成 GPU 能读的形式。

模型训练时:如果数据放在了GPU上,那么模型也要转到GPU上。

模型预测时:计算预测的acc、auc这类型的评估参数时,实在cpu上进行的,所以模型evaluate时,需要将loss之类的转到cpu上,例子如下:

            labels = labels.data.cpu().numpy()
            predic = torch.max(logits, 1)[1].cpu().numpy()
            labels_all = np.append(labels_all, labels)
            predict_all = np.append(predict_all, predic)
            acc = metrics.accuracy_score(labels_all, predict_all)

转换时常见错误

1.RuntimeError: Input, output and indices must be on the current device

如果你的数据和模型没有同时在gpu或者cpu上,训练模型时,会报错如下,意思是输入和输出需要在同一设备上。

RuntimeError: Input, output and indices must be on the current device

解决方法:

将数据和模型放在同一设备即可。

2.AttributeError: 'list' object has no attribute 'cuda'

没搞清楚数据是不是tensor,就转到gpu时,会报出这个错误。

解决方法:先转为tensor,再转到gpu。

例子:

查看自己的target类型,原为['1','0','1','1']。这种列表试字符串型。而应该修改为torch.tensor类型。才能用于网络计算

简单改为:先改为numpy再转换为tensor,搞定!

label = torch.from_numpy(np.fromstring(label, dtype=int, sep=','))

 

参考:
1.https://zhuanlan.zhihu.com/p/31936740

2.https://blog.csdn.net/qq_21578849/article/details/85240797

3.训练demo:https://blog.csdn.net/WeDon_t/article/details/104300877?utm_medium=distribute.pc_relevant.none-task-blog-BlogCommendFromMachineLearnPai2-3.channel_param&depth_1-utm_source=distribute.pc_relevant.none-task-blog-BlogCommendFromMachineLearnPai2-3.channel_param

4.训练常见错误:https://blog.csdn.net/u014264373/article/details/87640753

 

  • 15
    点赞
  • 44
    收藏
    觉得还不错? 一键收藏
  • 20
    评论
### 回答1: 在使用PyTorch进行深度学习任务,可以通过将计算从CPU转移到GPU上来加快模型训练和推理的速度。下面是使用PyTorch将计算从CPU转移到GPU的步骤: 1.首先,需要检查计算机是否具有支持CUDAGPU。使用以下代码可以检查GPU是否可用: ``` import torch if torch.cuda.is_available(): device = torch.device("cuda") # 使用GPU else: device = torch.device("cpu") # 使用CPU ``` 2.接下来,将模型和数据加载到设备上。可以使用以下代码将模型和张量加载到所选设备上: ``` model = YourModel().to(device) # 将模型加载到设备上 input_data = torch.randn(batch_size, input_size).to(device) # 将输入数据加载到设备上 ``` 这将确保模型和数据都在GPU上进行计算。 3.在训练过程中,使用以下代码将输入数据和模型参数传递给GPU: ``` for epoch in range(num_epochs): # ... output = model(input_data) # 将输入数据传递给模型 loss = loss_function(output, target) # 计算损失函数 model.zero_grad() # 清除梯度 loss.backward() # 反向传播计算梯度 optimizer.step() # 更新参数 # ... ``` 即使计算不再在CPU上进行,PyTorch可以自动将相关操作标记为需要在GPU上执行。 需要注意的是,将计算从CPU转移到GPU上可能需要一定的间,因为需要将数据从主内存复制到显存。因此,在小规模数据集上,将计算移动到GPU可能会导致速度下降。但是,对于大规模数据集和复杂的模型,使用GPU进行计算通常可以显著加快训练和推理速度。 最后,当训练或推理完成后,可以使用以下代码将模型和数据从GPU转移到CPU上: ``` model = model.to("cpu") # 将模型加载到CPU上 input_data = input_data.to("cpu") # 将输入数据加载到CPU上 ``` 这样可以释放GPU显存,并在不需要GPU计算的情况下减少资源消耗。 ### 回答2: 在PyTorch中,将模型CPU转移到GPU是非常简单的。首先,确保您的系统上已经安装了正确的PyTorchCUDA版本,并且您的计算机具有至少一个NVIDIA GPU。 首先,将模型转移到GPU之前,需要确保将模型和输入数据都转换PyTorch Tensor对象。然后,使用`to()`方法将Tensor转移到GPU上。 下面是一个简单的示例代码: ```python import torch # 定义模型 model = YourModel() # 将模型参数从CPU转移到GPU model.to(torch.device("cuda")) # 定义输入数据并转移到GPU input_data = torch.tensor([1, 2, 3]) input_data = input_data.to(torch.device("cuda")) # 在GPU上运行模型 output = model(input_data) # 将结果转移到CPU上 output = output.to(torch.device("cpu")) ``` 在上面的代码中,`to(torch.device("cuda"))`将模型参数和输入数据都转移到GPU上。然后,可以在GPU上运行模型并得到输出结果。最后,使用`to(torch.device("cpu"))`将结果转移到CPU上,以便进一步处理或输出。 需要注意的是,在转移到GPU之前,确保您的GPU上有足够的内存来存储模型和输入数据。如果GPU内存不够,可能会导致内存溢出错误。 此外,还可以使用`torch.cuda.is_available()`来检查系统是否有可用的GPU。如果返回True,表示系统上有可用的GPU,否则表示只能在CPU上运行。 ### 回答3: 在PyTorch中,将计算从CPU转移到GPU可以显著加速训练和推断过程。下面是将PyTorch代码从CPU迁移到GPU的步骤: 1. 首先,需要确保系统上已安装并配置了可以使用的GPU驱动程序和CUDA工具包,以便PyTorch可以利用GPU资源。 2. 在PyTorch代码中,首先需要将模型和输入数据加载到CPU上。可以使用`torch.device`函数指定设备,将其设置为`'cpu'`。 3. 接下来,创建模型实例并将其移动到设备上。可以使用`model.to(device)`函数将模型加载到指定设备。例如,`model = model.to(device)`将模型加载到CPU上。 4. 对于输入数据,同样使用`input_variable = input_variable.to(device)`将其移动到设备上。这里的`input_variable`可以是张量、数据加载器或数据集,取决于具体的代码实现。 5. 如果使用了优化器(如SGD或Adam),同样需要将其关联的参数移动到指定设备上。可以使用`optimizer = optimizer.to(device)`将优化器加载到设备上。 6. 最后,迭代训练过程中的每个批次或推断过程中的每个样本,确保将数据也加载到设备上。可以使用`inputs, labels = inputs.to(device), labels.to(device)`将每个批次加载到指定设备。 这样一来,PyTorch将使用GPU来进行计算,从而加速模型训练和推断过程。在某些情况下,将计算从CPU转移到GPU还可以节省内存,并允许处理更大规模的数据集。 总结起来,将PyTorch代码从CPU转移到GPU的步骤是加载模型、输入数据和优化器到设备上,并确保在计算过程中也将数据加载到设备上。这样可以利用GPU资源进行加速计算。
评论 20
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值