在PyTorch中将深度神经网络代码从CPU改为GPU运算,主要需要修改处

在PyTorch中将深度神经网络运行于GPU,需将模型、输入数据、损失函数、优化器及数据加载器置于GPU设备上。关键操作包括使用`.to(device)`将对象转移到CUDA设备,并在保存和加载模型时注意CPU与GPU间的转换。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在PyTorch中将深度神经网络代码从CPU改为GPU运算,主要需要修改以下几个方面:

  1. 模型定义
    在构建模型时,将模型放到GPU上:
    python
    device = torch.device(“cuda”)
    model = Model().to(device)

  2. 输入数据
    将输入数据移动到GPU上:
    python
    inputs = data.to(device)

  3. 模型参数
    可以调用.cuda()将模型的参数移动到GPU上:
    python
    model.cuda()

  4. 计算损失函数和优化器
    损失函数计算需要将GPU tensor作为输入,优化器需要在GPU参数上进行优化。
    python
    criterion = nn.MSELoss().to(device)
    optimizer = optim.SGD(model.parameters(), lr=0.01)

  5. 数据加载
    可以使用.cuda()将DataLoader输出移动到GPU上。

  6. 模型训练
    模型在GPU上进行前向传播和反向传播计算。

  7. 保存和加载
    保存或加载模型时需要使用.cpu()将参数移动到CPU内存上。
    主要就是确保模型、数据、计算都在GPU上进行,同时保存加载时注意在CPU和GPU之间转换。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值