随着人工智能技术的飞速发展,越来越多的企业和个人开始尝试将AI技术应用于实际业务场景,以提升效率和用户体验。
今天,跟大家分享一个免费的解决方案,如何利用现有的开源资源和免费工具,搭建一个基于微信公众号的AI聊天机器人。
整个过程分为四个步骤。下面,详细介绍每一步的具体操作。
第一步:安装ollama、下载模型、加载模型
ollama是一个开源的模型管理工具,可以帮助我们很方便地下载和运行各种 AI 模型。在这里,我们选择 qwen2.5:7b 模型。这是一个基于 Transformer 架构的大型语言模型,能够理解和生成自然语言文本,适合用于构建聊天机器人。
1、安装ollama。打开 ollama 官方网站,按照指南下载安装。https://ollama.com/download
2、打开控制台窗口,输入以下运行命令:
ollama pull qwen2.5:7b
下载的 qwen2.5:7b 模型文件大小约为 4.7 GB。
3、模型下载完成后,加载运行该模型:
ollama run qwen2.5:7b
这样,我们就成功地本地化部署了 AI 聊天模型。
第二步:搭建微信服务器
为了能够接收和处理微信公众号的消息,还需要搭建一个本地的微信服务器。这里,我们使用Python语言来实现。首先,确保系统已经安装了 Python 环境。然后,创建一个名为 app.py 的 Python 文件,以实现微信公众号的验证和消息处理功能。【想要完整代码的朋友,请关注我的微信公众号“涣水客”,后台留言,免费提供。】
当我们的微信服务器接收到用户通过微信公众号后台发来的文本消息时,会自动调用 ollama 模型生成回复,并反馈给用户。
接下来,需要新开一个控制台窗口,运行自建微信服务器:
python app.py
这样,一个简易的微信服务器就搭建完成了
第三步:内网转外网
为了让微信公众号能够访问我们的服务器,还需要将内网的服务器地址转换为外网地址。这里使用 cpolar 工具来实现。cpolar 是一个免费的内网穿透工具,可以帮助我们轻松地将内网服务转换到外网。
首先,打开官网https://www.cpolar.com/,按照提示下载安装。完成后,新开一个控制台窗口,运行
cpolar http 8800
将内网的端口映射到外网。运行成功后,cpolar 会生成一个外网地址。复制这个地址,稍后会用到。
第四步:微信公众号后台配置
最后,要在微信公众号后台进行一些配置,以便让微信公众号能够与我们搭建的微信服务器进行通信。
• 登录微信公众号后台,找到“设置与开发” -->"开发接口管理"-->"基本配置"-->"服务器配置"。
• 在“服务器地址(URL)”栏中填入第三步生成的外网地址,并在地址后面加上“/wechat”
• 在“Token”栏中填入你在`app.py`文件中设置的token(例如:`wenxin`)。
• 点击“提交”按钮,完成配置。
完成以上步骤后,我们的微信公众号AI聊天机器人就搭建完成了。
现在,用户可以通过微信公众号与我们的AI聊天机器人进行对话,体验智能聊天服务。
使用效果如下:
总结
通过以上四个步骤,我们开源工具的基础功能,成功搭建了一个基于微信公众号的AI聊天机器人。整个过程大部分步骤无需编写代码,只需进行一些配置。希望能够帮助到有需要的朋友,让大家能够快速将AI技术应用于实际业务场景。以上实现还存在一些问题需优化。比如,本地部署的 qwen2.5:7b 没有联网搜索功能,导致模型的信息是“死的”。
目前的解决方法包括:集成外部搜索引擎、使用大模型 API的联网搜索功能、自行实现联网搜索或利用第三方服务等。后面可结合实际选用,以帮助模型获取最新的互联网信息,提升模型的实用性和交互体验。