深度学习之入门Python第一天

这篇博客展示了如何使用Python的numpy和matplotlib库来绘制神经网络中常用的两种激活函数:阶跃函数和sigmoid函数。阶跃函数是一个简单的非线性函数,其输出在x>0时突然变为1,在x<=0时为0。sigmoid函数则是一个平滑的S型曲线,其值域在0到1之间,常用于概率和逻辑回归。这两个函数对于神经网络的训练和预测至关重要。
摘要由CSDN通过智能技术生成

神经网络

1.阶跃函数的图形

import numpy as np     #使用numpy库,并且给numpy起了个别名为np
import matplotlib.pylab as plt    #使用绘图库
def step_function(x):             #定义阶跃函数,并且把进行>0判断,它会自动变成bool值,dtype=np.int 会变成int值返回
    return np.array(x>0,dtype=np.int) 

x=np.arange(-5.0,5.0,0.1) #给数组x赋值,x=[-5.0,-4.9,...,4.9,5.0]
y=step_function(x)
plt.plot(x,y) #x为x轴的值,y为有轴的值
plt.ylim(-0.1,1.1) #制定y轴的范围
plt.show() #显示图片

在Anaconda3运行的效果
在这里插入图片描述

2.sigmoid函数的实现

import numpy as np     #使用numpy库,并且给numpy起了个别名为np
import matplotlib.pylab as plt    #使用绘图库
def sigmoid(x):             #定义sigmoid函数
    return 1/(1+np.exp(-x))

x=np.arange(-5.0,5.0,0.1) #给数组x赋值,x=[-5.0,-4.9,...,4.9,5.0]
y=sigmoid(x)
plt.plot(x,y) #x为x轴的值,y为有轴的值
plt.ylim(-0.1,1.1) #制定y轴的范围
plt.show() #显示图片

sigmoid函数的图像
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值