python绘制地下水位等值线

本文介绍了如何使用Python和相关库(如numpy、matplotlib和cartopy)生成基于测试数据的地下水位等值线图。通过读取经纬度和水位数据,展示了如何创建地图投影、绘制等值线并添加地图特征。作者期待读者分享更优化的绘图方法。
摘要由CSDN通过智能技术生成

python绘制地下水位等值线——测试数据

数据都是编的,不是真实的,主要用于测试。
准备测试数据groundwater_data.txt,第一列代表经度,第二列代表维度,第三列代表水位深度。

数据如下:

110 30 8
111 31 10
120 28 15
115 40 38
110 35 5
125 25 3
130 25 0

代码如下:

import numpy as np
import matplotlib.pyplot as plt
import cartopy.crs as ccrs
import cartopy.feature as cfeature

# 假设data包含经度、纬度、地下水位的数据
data = np.loadtxt('groundwater_data.txt')  # 请替换为你的实际文件路径
longitude = data[:, 0]
latitude = data[:, 1]
groundwater_level = data[:, 2]

# 创建地图投影
ax = plt.axes(projection=ccrs.PlateCarree())

# 绘制等值线
contours = plt.tricontourf(longitude, latitude, groundwater_level, 10, cmap='viridis')

# 添加颜色条
plt.colorbar(contours, orientation="horizontal")

# # 添加地图特征
# ax.coastlines()
# ax.gridlines()
# 添加一些地图特征
ax.add_feature(cfeature.COASTLINE)
ax.add_feature(cfeature.BORDERS, linestyle=':')
ax.add_feature(cfeature.LAND, edgecolor='black')
ax.add_feature(cfeature.LAKES, edgecolor='black')
ax.add_feature(cfeature.RIVERS)

# 添加经纬度网格线
ax.gridlines(draw_labels=True, dms=True, x_inline=False, y_inline=False)

# 添加标题和标签
plt.title('Groundwater Contour')
plt.xlabel('Longitude')
plt.ylabel('Latitude')

# 显示图形
plt.show()

结果如下图,由于测试数据较少,等值线有明显棱角。如果有更好的绘制地下水位等值线的方法欢迎留言讨论,不胜感激。
在这里插入图片描述

地下水位预测通常涉及时间序列分析和机器学习技术,在Python中,你可以使用一些流行的库如pandas、NumPy、scikit-learn以及专门用于时间序列分析的库如statsmodels、Prophet或者TensorFlow/Keras进行模型构建。以下是一个简单的步骤概述: 1. **数据处理**:首先导入所需的库,读取历史地下水位观测数据,并对缺失值和异常值进行预处理。 ```python import pandas as pd import numpy as np data = pd.read_csv('groundwater_data.csv') ``` 2. **特征工程**:提取时间序列特征,比如日期、季度、季节等,并转换成适合模型输入的形式。 ```python data['date'] = pd.to_datetime(data['Date']) data.set_index('date', inplace=True) ``` 3. **分割数据**:将数据分为训练集和测试集,以便评估模型性能。 ```python train_data, test_data = data.iloc[:-1], data.iloc[-1:] ``` 4. **选择模型**:可以选择ARIMA、LSTM或Prophet等模型进行预测,例如使用Prophet: ```python from fbprophet import Prophet model = Prophet() model.fit(train_data) ``` 5. **预测**:对未来地下水位进行预测,并可视化结果。 ```python future = model.make_future_dataframe(periods=forecast_days) forecast = model.predict(future) ``` 6. **评估**:比较预测值与实际值,计算误差指标(如RMSE或MAE)。 ```python from sklearn.metrics import mean_squared_error rmse = np.sqrt(mean_squared_error(test_data['Groundwater Level'], forecast[['yhat']].tail(len(test_data)))) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

彭博锐

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值