一、MNIST数据集介绍 点击此处返回总目录 二、MNIST数据集下载 三、常用的操作
一、MNIST数据集介绍 共有7万张图片。其中6万张用于训练神经网络,1万张用于测试神经网络。 每张图片是一个28*28像素点的0~9的手写数字图片。 黑底白字。黑底用0表示,白字用0~1之间的浮点数表示,越接近1,颜色越百。
我们把784个像素点组成一个长度为784的一维数组,这个一维数据就是我们要喂入神经网络的输入特征。MNIST数据集还提供了每张图片对应的标签,以一个长度为10的一维数组给出。
二、MNIST数据集下载 TensorFlow官方提供了input_data模块,input_data模块使用read_data_sets()函数自动加载数据集。函数第一个参数,是数据集存放路径。第二个参数one_hot=True表示以独热码的形式存取。 当函数运行时,会自动检查存放路径下是否有该数据集,如果没有,会自动下载MNIST数据集,并分为Train、Validation、Test三个子集。
我 |
MNIST数据集
最新推荐文章于 2024-09-17 21:17:40 发布
MNIST 是一个广泛使用的手写数字识别数据集,包含60,000个训练样本和10,000个测试样本。每个样本是28x28像素的灰度图像,用于机器学习和深度学习中的图像分类任务。这个数据集常被用来入门神经网络和图像识别技术,是评估不同算法性能的标准基准之一。"
125029623,7924214,理解Kafka:核心概念与特性解析,"['大数据', '消息中间件', '实时处理', 'Kafka']
摘要由CSDN通过智能技术生成