【文献阅读笔记】关于GANomaly的异常检测方法

1、GANomaly: Semi-Supervised Anomaly Detection via Adversarial Training

2019 ACCV
领域:异常检测
目标:图像输入数据

模型

在这里插入图片描述
网络分成三个子网络:
第一个子网络: 自动编码器网络,充当模型的生成器。用来重建图像。
第二个子网络: 一个编码器网络,与第一个编码器网络的架构相同。
第三个子网络: 是鉴别器网络。用来分类为真还是假。

主要创新

提出利用潜在空间的表示来使得重建图像和正常样本的分布差异。

2、Skip-GANomaly: Skip Connected and AdversariallyTrained Encoder-Decoder Anomaly Detection

2019 IJCNN
领域:异常检测
目标:图像输入数据

模型

在这里插入图片描述
网络分成两个子网络:
第一个子网络: 编码器和解码器构成的自动编码器,并引入跳连。获得多尺度特征,保留全局和局部特征。
第二个子网络: 是一个鉴别器网络。

主要创新点

  1. 引入了跳连的策略
  2. 减少了网络的结构,减少了一个编码器网络,利用鉴别器得到的bottleneck features计算损失。

3、Industrial surface defect detection and localization using multi-scale information focusing and enhancement GANomaly

2024 Expert Systems With Applications
领域:异常检测
目标:图像输入数据

模型

在这里插入图片描述
网络分成两个子网络:
第一个子网络: 编码器和解码器构成的自动编码器,并引入跳连和自注意力机制。获得更丰富的上下文信息。
第二个子网络: 是一个鉴别器网络。

损失函数:
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
消融实验
在这里插入图片描述
引入的跳连、自注意力机制以及结构相似性损失均可以提升性能。

主要创新点

  1. 与上面第二个论文相比,只选择编码器最后一个下采样层进行跳连。
  2. 引入自注意力机制,关注更局代表性的信息。
  3. 引入使用基于结构相似性的损失函数。

4、想法

  1. 可以利用潜在空间中的bottleneck features进行学习,进一步减小数据分布的差异性。
  2. 注意多尺度信息。
  3. 可以利用注意力机制进一步关注代表性信息。
### Ganomaly异常检测简介 Ganomaly 是一种基于生成对抗网络 (GAN) 的异常检测方法,旨在识别数据集中的异常样本。该模型通过训练一个生成器来重建输入图像,并利用判别器评估重建误差以区分正常和异常样本[^1]。 ### 安装依赖库 为了运行 Ganomaly 项目,需安装必要的 Python 库: ```bash pip install torch torchvision matplotlib numpy opencv-python-headless ``` ### 数据准备 假设使用的是 MNIST 或 CIFAR-10 这样的标准数据集,在下载并解压后,应确保文件路径正确配置以便加载训练/测试图片。对于自定义数据集,则需要按照特定格式整理成 PyTorch DataLoader 可读取的形式。 ### 训练过程概述 整个流程分为两个阶段:预训练编码器-解码器结构用于特征提取;随后微调完整的 GAN 架构完成最终优化。具体实现细节可参阅官方 GitHub 上给出的例子代码片段: ```python from ganomaly import Ganomaly model = Ganomaly(input_size=(3, 32, 32), z_dim=100) for epoch in range(num_epochs): model.train() for i, data in enumerate(dataloader): imgs, _ = data # 更新 D 网络参数 errD_fake, errD_real = model.optimize_D(imgs) # 更新 G 网络参数 errG = model.optimize_G(imgs) ``` ### 测试与评估 经过充分迭代后的模型可以用来预测新样本是否属于已知类别之外的情况。通常会计算重构损失作为衡量指标之一,当其超过设定阈值时即认为遇到了潜在异常事件。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值