大型语言模型的演变——BERT、GPT3、T5 和 PaLM

        早期的 NLP 系统大多是基于规则的,后来被机器学习模型所取代。从头开始训练深度学习语言模型需要大量的标记数据,生成成本昂贵,但很容易获得大量未标记的文本数据。同时,迁移学习允许重用在源任务中学到的知识,以便在目标任务中表现良好。近年来,Transformers 比传统 RNN 更受欢迎。结合 Transformer 和迁移学习的力量,NLP 领域的研究人员开发了基于 Transformer 的自监督语言模型。

        在本文中,我们将概述基于 Transformer 的自监

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值