早期的 NLP 系统大多是基于规则的,后来被机器学习模型所取代。从头开始训练深度学习语言模型需要大量的标记数据,生成成本昂贵,但很容易获得大量未标记的文本数据。同时,迁移学习允许重用在源任务中学到的知识,以便在目标任务中表现良好。近年来,Transformers 比传统 RNN 更受欢迎。结合 Transformer 和迁移学习的力量,NLP 领域的研究人员开发了基于 Transformer 的自监督语言模型。
在本文中,我们将概述基于 Transformer 的自监
早期的 NLP 系统大多是基于规则的,后来被机器学习模型所取代。从头开始训练深度学习语言模型需要大量的标记数据,生成成本昂贵,但很容易获得大量未标记的文本数据。同时,迁移学习允许重用在源任务中学到的知识,以便在目标任务中表现良好。近年来,Transformers 比传统 RNN 更受欢迎。结合 Transformer 和迁移学习的力量,NLP 领域的研究人员开发了基于 Transformer 的自监督语言模型。
在本文中,我们将概述基于 Transformer 的自监