53 最大子序和

文|Seraph

01 | 问题

给定一个整数数组 nums ,找到一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。

示例:

输入: [-2,1,-3,4,-1,2,1,-5,4],
输出: 6
解释: 连续子数组 [4,-1,2,1] 的和最大,为 6。

进阶:
如果你已经实现复杂度为 O(n) 的解法,尝试使用更为精妙的分治法求解。

02 |解题

初解:

每次循环判断是否要重新计算子序列和,判断依据是加上当前值的和是否能大于当前值,如不能则从当前值重新计算。(换句话说就是当前值都比之前累加的大,就没必要之前的子序列和了)

class Solution {
public:
    int maxSubArray(vector<int>& nums) {
        int size = nums.size();
        int temp = nums[0];
        int iMax = nums[0];
        for(int i=1; i<size; i++)
        {
            if(temp+nums[i]>nums[I])
            {
                temp += nums[i];
            }
            else
            {
                temp = nums[i];
            }
            iMax = max(iMax, temp);
        }
        return iMax;
    }
};
另解

这种解法与初解也差不多,每次累加,如前面的累加和小于零,则重新累加。因为之前为负数的累加和,只会使后续的累加和更小。
下面算法巧妙的就是,用ans记录了当前最大的序列和,能很好的处理当全部序列为负数时的情况。ans也会记录住最大的负数。

class Solution {
public:
    int maxSubArray(vector<int>& nums) {
        int n=nums.size();
        int ans=INT_MIN;
        int sum = 0;
        for (int j = 0; j < n; ++j)    {
            if (sum < 0)
                sum = 0;
            if (sum + nums[j] > ans)        
                ans = sum + nums[j];
            sum +=nums[j];
        }
        return ans;
    
};   
终解:

这里可以将初级的if else语句用一个max表示,因为这处代码逻辑都想取得当前累计最大值。无论是加上当前值的和大,还是当前值,结果是取其中的最大值即可。

class Solution {
public:
    int maxSubArray(vector<int>& nums) 
    {
        int res=INT_MIN,cursum=0;
        for(auto num:nums)
        {
            cursum=max(cursum+num,num);
            res=max(cursum,res);
        }
        return res;
    }
};

03 | 积累知识点

  1. max包含在中。
  2. 使用INT_MIN/INT_MAX来表示数据类型范围边界。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值