算法题(5)最长公共子串

最长公共子串

问题描述: 给定两个不为空的字符串,求这两个字符串之间最长的公共子串。

思路: 我们借助动态规划的思想,利用递推公式起始向后逐步计算两个字符串的部分最长公共子串,直至得出整体的最大子串。递推公式如下:
f ( i , j ) = { 0 A [ i ] ≠ B [ j ] ∩ ( i = 0   ∪   j = 0 ) 1 A [ i ] = B [ j ] ∩ ( i = 0   ∪   j = 0 ) 0 A [ i ] ≠ B [ j ] f ( i − 1 , j − 1 ) + 1 A [ i ] = B [ j ] f(i,j)=\begin{cases} 0 & \text A[i]\not=B[j]\cap (i=0 \ \cup \ j = 0)\\1 & \text A[i]=B[j]\cap (i=0 \ \cup \ j = 0)\\0 & \text A[i]\not=B[j]\\ f(i-1, j-1) +1 & \text A[i]=B[j] \end{cases} f(i,j)=010f(i1,j1)+1A[i]=B[j](i=0  j=0)A[i]=B[j](i=0  j=0)A[i]=B[j]A[i]=B[j]

  同levenshtein编辑距离算法类似,最长公共子串同样需要填充表格来枚举所有位置的编辑距离,从而找出最大值。下面我们给出实现代码:


class solution:

    def __init__(self, A, B):
        self.A = A
        self.B = B
        self.Matrix = []
        self.lcstring(self.A, self.B)

    def lcstring(self, A, B):
        lengthA = len(A)
        lengthB = len(B)
        longest = 0
        longestend = []
        if lengthA == 0 or lengthB == 0 :
            return
        for i in range(lengthA):
            self.Matrix.append([])
            for j in range(lengthB):
                if A[i] == B[j] :
                    if i == 0 or j == 0:
                        self.Matrix[i].append(1)
                    else: self.Matrix[i].append(self.Matrix[i-1][j-1]+1)
                    if self.Matrix[i][j] > longest:
                        longestend.clear()
                        longest = self.Matrix[i][j]
                        longestend.append(i)
                        continue
                    if self.Matrix[i][j] == longest:
                        longestend.append(i)
                else: self.Matrix[i].append(0)
        print(longest)
        for i in longestend:
            print(A[i-(longest-1):i+1])

if __name__ == '__main__':
    sol = solution("helloworld","loop")

  上述代码输出为最长公共子串的长度,以及该长度的所有子串集。运行结果如下:

在这里插入图片描述
  我们将输入字符串稍作修改(”helloworld“改为“hilloworld”,“loop”改为“iloor”),以测试其能否完全输出所有子串,输出结果如下:
在这里插入图片描述
  输出结果表明,我们的算法基本正确,读者可以尝试使用。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值